• Title/Summary/Keyword: shear interaction

Search Result 707, Processing Time 0.026 seconds

The role of slenderness on the seismic behavior of ground-supported cylindrical silos

  • Demir, Aysegul Durmus;Livaoglu, Ramazan
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.65-74
    • /
    • 2019
  • This paper reports on the results of a parametric study, which examines the effects of varying aspect ratios on the dynamic response of cylindrical silos directly supported on the ground under earthquake loading. Previous research has shown that numerical models can provide considerably realistic simulations when it comes to the behavior of silos by using correct boundary conditions, appropriate element types and material models. To this end, a three dimensional numerical model, taking into account the bulk material-silo wall interaction, was produced by the ANSYS commercial program, which is in turn based on the finite element method. The results obtained from the numerical analysis are discussed comparatively in terms of dynamic material pressure, horizontal displacement, equivalent base shear force and equivalent bending moment responses for considered aspect ratios. The effects experienced because of the slenderness of the silo in regards to the seismic response were evaluated along with the effectiveness of the classification system proposed by Eurocode in evaluating the loads on the vertical walls. Results clearly show that slenderness directly affects the seismic response of such structures especially in terms of behavior and the magnitude of the responses. Furthermore the aspect ratio value of 2.0, given as a behavioral changing limit in the technical literature, can be used as a valid limit for seismic behavior.

Evaluation of jet breakup length with a CFD code under steam generation condition in a pre-flooded cavity

  • Jeong-Hyeon Eom;Gi-Young Tak;In-Sik Ra;Huu Tiep Nguyen;Hae-Yong Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2498-2503
    • /
    • 2023
  • When the reactor vessel is penetrated in a severe accident of light water reactor, the molten fuel-coolant interaction including the jet breakup occurs and the jet breakup length becomes one of the important parameters. Most numerical studies on jet breakup process have been carried out using dedicated computer codes. Some researchers are trying to apply commercial CFD codes to their investigations on comprehensive jet breakup process. However, the complexity of the phenomena limits the CFD application only to hydrodynamic aspects. In the present study, numerical analysis of jet breakup under vapor generation is pursued using the STAR-CCM + code. The obtained CFD prediction of the MATE09 experiment shows jet breakup progression patterns consistent to the images taken in the experiment. Further, the predicted positions of leading head, which determine the jet breakup length, are in good agreement with the MATE 09 data. The investigation of hydrodynamic effects on the jet breakup with higher jet velocity results in a stronger shear force and earlier jet breakup process even though there exists the vapor pocket around the corium jet. In future studies, the effect of vapor intensity on the jet breakup length would be investigated further by changing other parameters.

Nonlinear numerical analysis of influence of pile inclination on the seismic response of soil-pile-structure system

  • Lina Jaber;Reda Mezeh;Zeinab Zein;Marc Azab;Marwan Sadek
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.437-447
    • /
    • 2023
  • Inclined piles are commonly used in civil engineering constructions where significant lateral resistance is required. Many researchers proved their positive performance on the seismic behavior of the supported structure and the piles themselves. However, most of these numerical studies were done within the framework of linear elastic or elastoplastic soil behavior, neglecting therefore the soil non-linearity at low and moderate soil strains which is questionable and could be misleading in dynamic analysis. The main objective of this study is to examine the influence of the pile inclination on the seismic performance of the soil-pile-structure system when both the linear elastic and the nonlinear soil models are employed. Based on the comparative responses, the adequacy of the soil's linear elastic behavior will be therefore evaluated. The analysis is conducted by generating a three-dimensional finite difference model, where a full interaction between the soil, structure, and inclined piles is considered. The numerical survey proved that the pile inclination can have a significant impact on the internal forces generated by seismic activity, specifically on the bending moment and shear forces. The main disadvantages of using inclined piles in this system are the bending forces at the head and pile-to-head connection. It is crucial to account for soil nonlinearity to accurately assess the seismic response of the soil-pile-structure system.

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTICS AROUND A THREE DIMENSIONAL CAVITY WITH HIGH ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.7-13
    • /
    • 2010
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 5.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}10^6$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental datum in the low aspect ratio cavity (L/D = ~4.5). In the high aspect ratio cavity, however, there are other low dominant frequencies of the leading edge shear layer with the dominant frequencies of the feedback mechanism.

The relationship between time-varying eccentricity of load with the corner lateral displacement response of steel structure during an earthquake

  • Takin, Kambiz;Hashemi, Behrokh H.;Nekooei, Masoud
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.801-812
    • /
    • 2016
  • In an actual design, none of the structures with shear behaviors will be designed for torsional moments. Any failure or damages to roofs, infills, shear walls, and braces caused by an earthquake, will inevitably result in relocation of center of mass and rigidity of the structure. With these changes, the dynamic characteristics of structure could be changed during an earthquake at any moment. The main objective of this paper is to obtain the relationship between time-varying eccentricity of load and corner lateral displacement. In this study, various methods have been used to determine the structural response for time-varying lateral corner displacement. As will be seen below, some of the structural calculation methods result in a significant deviation from the actual results, although these methods include the interaction effects of modes. Controlling the lateral displacement of structure can be performed in different ways such as, passive dampers, friction dampers, semi-active systems including the MR damper and active Systems. Selecting and locating these control systems is very important to bring the maximum safety with minimum cost into the structure. According to this study will be show the relation between the corner lateral displacements of structure and time-varying eccentricity by different kind of methods during an earthquake. This study will show that the response of the structure at the corners due to an earthquake can be very destructive and because of changing the eccentricity of load, calculating the maximum possible response of system can be carried out by this method. Finally, some kind of systems must be used for controlling these displacements. The results shows that, the CQC, DSC and exact methods is comply each other but the results of Vanmark method is not comfortable for these kind of buildings.

Effect of masonry infill walls with openings on nonlinear response of reinforced concrete frames

  • Ozturkoglu, Onur;Ucar, Taner;Yesilce, Yusuf
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.333-347
    • /
    • 2017
  • Masonry infill walls are unavoidable parts of any building to create a separation between internal space and external environment. In general, there are some prevalent openings in the infill wall due to functional needs, architectural considerations or aesthetic concerns. In current design practice, the strength and stiffness contribution of infill walls is not considered. However, the presence of infill walls may decisively influence the seismic response of structures subjected to earthquake loads and cause a different behavior from that predicted for a bare frame. Furthermore, partial openings in the masonry infill wall are significant parameter affecting the seismic behavior of infilled frames thereby decreasing the lateral stiffness and strength. The possible effects of openings in the infill wall on seismic behavior of RC frames is analytically studied by means of pushover analysis of several bare, partially and fully infilled frames having different bay and story numbers. The stiffness loss due to partial opening is introduced by the stiffness reduction factors which are developed from finite element analysis of frames considering frame-infill interaction. Pushover curves of frames are plotted and the maximum base shear forces, the yield displacement, the yield base shear force coefficient, the displacement demand, interstory drift ratios and the distribution of story shear forces are determined. The comparison of parameters both in terms of seismic demand and capacity indicates that partial openings decisively influences the nonlinear behavior of RC frames and cause a different behavior from that predicted for a bare frame or fully infilled frame.

Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels

  • Brunesi, E.;Nascimbene, R.;Deyanova, M.;Pagani, C.;Zambelli, S.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.951-972
    • /
    • 2015
  • The focus of the present study is to investigate both local and global behaviour of a precast concrete sandwich panel. The selected prototype consists of two reinforced concrete layers coupled by a system of cold-drawn steel profiles and one intermediate layer of insulating material. High-definition nonlinear finite element (FE) models, based on 3D brick and 2D interface elements, are used to assess the capacity of this technology under shear, tension and compression. Geometrical nonlinearities are accounted via large displacement-large strain formulation, whilst material nonlinearities are included, in the series of simulations, by means of Von Mises yielding criterion for steel elements and a classical total strain crack model for concrete; a bond-slip constitutive law is additionally adopted to reproduce steel profile-concrete layer interaction. First, constitutive models are calibrated on the basis of preliminary pull and pull-out tests for steel and concrete, respectively. Geometrically and materially nonlinear FE simulations are performed, in compliance with experimental tests, to validate the proposed modeling approach and characterize shear, compressive and tensile response of this system, in terms of global capacity curves and local stress/strain distributions. Based on these experimental and numerical data, the structural performance is then quantified under various loading conditions, aimed to reproduce the behaviour of this solution during production, transport, construction and service conditions.

NUMERICAL ANALYSIS FOR TURBULENT FLOW OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATION (세장비 변화에 따른 3차원 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.13-18
    • /
    • 2009
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought about by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 2.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}106$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental data in the low aspect ratio cavity (L/D = ~ 4.5). In the large aspect ratio cavity, however, there are other low dominant frequencies due to the leading edge shear layer with the dominant frequencies of the feedback mechanism. The characteristics of the acoustic wave propagation are analyzed using the Correlation of Pressure Distribution (CPD).

  • PDF