• Title/Summary/Keyword: shear frame

Search Result 720, Processing Time 0.032 seconds

Damping System Design for Apartment Buildings Using Equivalent Frame Model (등가프레임모델을 이용한 공동주택의 감쇠시스템 설계)

  • Kim, Jong-Ho;Lee, Myoung-Kyu;Chun, Young-Soo;Lee, Dong-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.351-360
    • /
    • 2014
  • The purpose of this research is to introduce the simplified equivalent frame model for the equivalent lateral force procedure, the response spectrum procedure and nonlinear procedure according to ASCE7-10 in order to reduce the time of performance and reasonably evaluate the effect of applying the damping system with the various conditions for the analysis and the variable. In this research, the seismic performance assessment and the design of the damping system were conducted through the nonlinear time history analysis based on the performance based seismic design in ASCE7-10 in regard to applying the damping system to apartment buildings which is lately issued. The optimal design based on the 75% of seismic base shear was performed for an apartment building. The seismic performance assessment were conducted to check the safety of the building, and the economic evaluation was performed by comparing the amount of resource for the optimal designed building with the amount of resource for the original building. In addition, hysteresis dampers was applied to the apartment building, and the suggested equivalent frame model was performed using the damping system design in ASCE7-10, then its control effects were proved in the full scale model of the apartment building which was used in this research.

Pushover Analysis of a Five-Story Steel Framed Structure Considering Beam-to-Column Connection (보-기둥 접합부를 고려한 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.129-137
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effect of the beam-column connection on the structural behavior. The connections were designed as a fully rigid connection and as a semirigid connection. A fiber model was utilized to describe the moment-curvature relationship of the steel beam and column, and a three-parameter power model was adopted for the moment-rotation angle of the semirigid connection. To evaluate the effects of higher modes on structural behavior, the structure was subjected to a KBC2005-equivalent lateral load and lateral loads considering higher modes. The structure was idealized as a separate 2D frame and as a connected 2D frame. The pushover analysis of 2D frames for the lateral load yielded the top displacement-base shear force, design coefficients such as overstrength factor, ductility ratio, and response modification coefficient, demanded ductility ratio for the semirigid connection,and distribution of plastic hinges. The sample structure showed a greater response modification coefficient than KBC2005, the higher modes were found to have few effects on the coefficient, and the lateral load of KBC2005 was found to be conservative. The TSD connection was estimated to secure economy and safety in the sample structure.

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Structural Safely Analysis of a Modified 1-2W Type Greenhouse Enhanced for Culturing Paprika (착색단고추 재배용 1-2W형 개조온실 구조의 안정성 검토)

  • Suh, Won-Myung;Choi, Man-Kwon;Bae, Yong-Han;Lee, Jong-Won;Yoon, Yong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.197-203
    • /
    • 2008
  • This study was performed to check the structural safety of modified 1-2W Greenhouses to be utilized fur growing Paprika. This type of greenhouse was derived from being remodeled by enhancing the column height of conventional 1-2W type greenhouses. According to the results of structural analysis performed by SAP-2000, there was not significant change in critical snow depth in spite of increasing the column height of 1.2 m by welding. But the critical wind velocities were shown to be $26.0\sim4l.0m/s$, which were $3\sim18%$ lower wind velocities compared with those critical velocities estimated for typical type of 1-2W greenhouse. Under the wind loads, those maximum section forces such as shear force, axial force, and bending moment, together with the deformed frame shape of strained greenhouse, were almost similar in both typical type and modified type. Maximum bending moment of column was found at eave's height of column on windward side. Under the snow loads, those maximum section forces such as shear farce, axial force, and bending moment, together with the deformed frame shape of strained greenhouse, were almost similar in both typical type and modified type. Maximum section forces except axial force was found at eave's height of column. Maximum axial force was found at inner column. Soil bearing capacity together with the total foundation resistance against wind upheaval was found to be consistently safe enough to resist to both wind load and snow load.

Seismic Behavior of a Five-story RC Structure Retrofitted with Buckling-Restrained Braces Using Time-dependent Elements (시간종속요소를 이용한 5층 RC건축물의 비좌굴가새 보강에 대한 내진거동)

  • Shin, Ji-Uk;Lee, Ki-Hak;Lee, Do-Hyung;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.11-21
    • /
    • 2010
  • This study presents seismic responses of 5-story reinforced concrete structures retrofitted with the buckling-restrained braces using a time-dependent element. The time-dependent element having birth and death times can freely be activated within the user defined time intervals during the time history analysis. The buckling-restrained brace that showed the largest energy dissipation capacity among the test specimens in previous research was used for retrofitting the RC buildings in this study. It was assumed that the first story of the damaged building under the first earthquake was retrofitted with the buckling-restrained braces considered as the time-dependent element before the second of the successive earthquakes occurs. Under this assumption, this paper compares seismic responses of the RC structures with the time-dependent element subjected to the successive earthquake. Subjected to the second earthquake, it was observed that activation of the BRB systems largely decreases deformation of the moment frame where the damage was concentrated under the first earthquake. However, damages to the shear wall systems were increased after activation of the BRB systems. Since the cumulative damages of the shear wall systems were infinitesimal compared with the retrofit effect of the moment frame, the BRB system was effective under the successive earthquake.

Proposal for Optimal Position of Offset Outrigger System (오프셋 아웃리거 구조시스템의 최적 위치에 대한 제안)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.84-91
    • /
    • 2019
  • For the goal of the proposal for optimum position of offset outrigger system, a structural schematic design of 70 stories building was carried out, using the general structure analysis program of MIDAS-Gen. In this research, the primary factors of this analysis research were the shear wall stiffness, the frame stiffness, the outrigger stiffness, the stiffness of column linked in outrigger system, etc. To achieve the aim of this study, we analyzed and studied the lateral displacement in top level, the force distribution of outrigger, the existing model of optimal outrigger location, and so on. This paper proposed the optimal position of offset outrigger system. Furthermore it is considered that the study results can be useful in getting the structure engineering data for seeking the optimal position of offset outrigger in the tall building.

Development of Frictional Wall Damper and Its Analytical Applications in R/C frame Structures (벽식마찰감쇄기의 개발 및 R/C 골조구조물에의 해석적 적용)

  • 조창근;박문호;권민호;강구수;서상길
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.718-725
    • /
    • 2002
  • A wall type friction damper is newly Proposed in this paper to improve the performance of R/C framed structures under earthquake loads. Although traditional dampers are usually placed as bracing members, the application ot bracing-type dampers into R/C structures is not as simple as those of steel structures due to the connection between R/C members and dampers and the stress concentration in connection region. Proposed damper is consisted of Teflon-sheet slider and R/C shear wall. The damper can also avoid stress concentration and reduce P-Δ effect. To evaluate the performance of proposed damper, nonlinear dynamic analyses are carried on 10 story and 3 bay R/C structures with numerical model for the damper. It is shown that the damper reduces the inter-story drifts and the time-historic responses; especially the damper prevents from forming plastic hinges on the lower columns.

The effect of cyclic loading on the rubber bearing with slit damper devices based on finite element method

  • Saadatnia, Mahdi;Riahi, Hossein Tajmir;Izadinia, Mohsen
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • In this paper, slit steel rubber bearing is presented as an innovative seismic isolator device. In this type of isolator, slit steel damper is an energy dissipation device. Its advantages in comparison with that of the lead rubber bearing are its simplicity in manufacturing process and replacement of its yielding parts. Also, slit steel rubber bearing has the same ability to dissipate energy with smaller value of displacement. Using finite element method in ABAQUS software, a parametric study is done on the performance of this bearing. Three different kinds of isolator with three different values of strut width, 9, 12 and 15 mm, three values of thickness, 4, 6 and 8 mm and two steel types with different yield stress are assessed. Effects of these parameters on the performance characteristics of slit steel rubber bearing are studied. It is shown that by decreasing the thickness and strut width and by selecting the material with lower yield stress, values of effective stiffness, energy dissipation capacity and lateral force in the isolator reduce but equivalent viscous damping is not affected significantly. Thus, by choosing appropriate values for thickness, strut width and slit steel damper yield stress, an isolator with the desired behavior can be achieved. Finally, the performance of an 8-storey frame with the proposed isolator is compared with the same frame equipped with LRB. Results show that SSRB is successful in base shear reduction of structure in a different way from LRB.

Cable-pulley brace to improve story drift distribution of MRFs with large openings

  • Zahrai, Seyed Mehdi;Mousavi, Seyed Amin
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.863-882
    • /
    • 2016
  • This study aims to introduce a new bracing system by which even super-wide frames with large openings can be braced. The proposed system, hereafter called Cable-Pulley Brace (CPB), is a tension-only bracing system with a rectilinear configuration. In CPB, a wire rope passes through a rectilinear path around the opening(s) and connects the lower corner of the frame to its opposite upper one. CPB is a secondary load resisting system with a nonlinear-elastic hysteretic behavior due to its initial pre-tension load. As a result, the required energy dissipation would be provided by the MRF itself, and the main intention of using CPB is to contribute to the initial and post-yield stiffness of the whole system. Using a stiffness calibration technique, optimum placement of the CPBs is discussed to yield a uniform displacement demand along the height of the structure. A displacement-based design procedure is proposed by which the MRF with CPB can be designed to achieve a uniform distribution of inter-story drifts with predefined values. Obtained results indicated that CPB leads to significant reductions in maximum and residual deformations of the MRF at the expense of minor increase in the maximum base shear and developed axial force demands in the columns. In the case of a typical 5-story residential building, compared to SMRF system, CPB system reduces maximum amounts of inter-story and residual drifts by 35% and 70%, respectively. Moreover, openings of the frame are not interrupted by the CPB. This is the most appealing feature of the proposed bracing system from architectural point of view.

Investigation on the performance of a new pure torsional yielding damper

  • Mahyari, Shahram Lotfi;Riahi, Hossein Tajmir;Esfahanian, Mahmoud Hashemi
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.515-530
    • /
    • 2020
  • A new type of pure torsional yielding damper made from steel pipe is proposed and introduced. The damper uses a special mechanism to apply force and therefore applies pure torsion in the damper. Uniform distribution of the shear stress caused by pure torsion resulting in widespread yielding along pipe and consequently dissipating a large amount of energy. The behavior of the damper is investigated analytically and the governing relations are derived. To examine the performance of the proposed damper, four types of the damper are experimentally tested. The results of the tests show the behavior of the system as stable and satisfactory. The behavior characteristics include initial stiffness, yielding load, yielding deformation, and dissipated energy in a cycle of hysteretic behavior. The tests results were compared with the numerical analysis and the derived analytical relations outputs. The comparison shows an acceptable and precise approximation by the analytical outputs for estimation of the proposed damper behavior. Therefore, the relations may be applied to design the braced frame system equipped by the pure torsional yielding damper. An analytical model based on analytical relationships was developed and verified. This model can be used to simulate cyclic behavior of the proposed damper in the dynamic analysis of the structures equipped with the proposed damper. A numerical study was conducted on the performance of an assumed frame with/without proposed damper. Dynamic analysis of the assumed frames for seven earthquake records demonstrate that, equipping moment-resisting frames with the proposed dampers decreases the maximum story drift of these frames with an average reduction of about 50%.