• Title/Summary/Keyword: shear end plate

Search Result 83, Processing Time 0.02 seconds

Experimental study on a new type of assembly bolted end-plate connection

  • Li, Shufeng;Li, Qingning;Jiang, Haotian;Zhang, Hao;Yan, Lei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.463-471
    • /
    • 2018
  • The bolted end-plate beam-column connections have been widely used in steel structure and composite structure because of its excellent seismic performance. In this paper, the end-plate bolted connection is applied in the concrete structure, A new-type of fabricated beam-column connections with end-plates is presented, and steel plate hoop is used to replace stirrups in the node core area. To study the seismic behavior of the joint, seven specimens are tested by pseudo-static test. The experimental results show that the new type of assembly node has good ductility and energy dissipation capacity. Besides, under the restraint effect of the high-strength stirrup, the width of the web crack is effectively controlled. In addition, based on the analysis of the factors affecting the shear capacity of the node core area, the formula of shear capacity of the core area of the node is proposed, and the theoretical values of the formula are consistent with the experimental value.

Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis

  • Rabia, Benferhat;Daouadji, Tahar Hassaine;Abderezak, Rabahi
    • Advances in materials Research
    • /
    • v.9 no.4
    • /
    • pp.265-287
    • /
    • 2020
  • A theoretical method to predict the interfacial stresses in the adhesive layer of reinforced concrete beams strengthened with porous FRP plate is presented in this paper. The effect due to porosity is incorporated utilizing a new modified rule of mixture covering the porosity phases. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of the porosity has been noted in the results. Indeed, the resulting interfacial stresses concentrations are considerably smaller than those obtained by other models which neglect the porosity effect. It was found that the interfacial stresses are highly concentrated at the end of the FRP plate, the minimization of the latter can be achieved by using porous FRP plate in particular at the end. It is also shown that the interfacial stresses of the RC beam increase with volume fraction of fibers, but decrease with the thickness of the adhesive layer.

Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)

  • Azandariani, Mojtaba Gorji;Gholhaki, Majid;Kafi, Mohammad Ali;Zirakian, Tadeh;Khan, Afrasyab;Abdolmaleki, Hamid;Shojaeifar, Hamid
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.109-123
    • /
    • 2021
  • This research endeavor intends to use the implicit finite element method to investigate the structural response of steel shear walls with partial plate-column connection. To this end, comprehensive verification studies are initially performed by comparing the numerical predictions with several reported experimental results in order to demonstrate the reliability and accuracy of the implicit analysis method. Comparison is made between the hysteresis curves, failure modes, and base shear capacities predicted numerically using ABAQUS software and obtained/observed experimentally. Following the validation of the finite element analysis approach, the effects of partial plate-column connection on the strength and stiffness performances of steel shear wall systems with different web-plate slenderness and aspect ratios under monotonic loading are investigated through a parametric study. While removal of the connection between the web-plate and columns can be beneficial by decreasing the overall system demand on the vertical boundary members, based on the results and findings of this study such detachment can lower the stiffness and strength capacities of steel shear walls by about 25%, on average.

Restrained Effect of End Plate on Plane Strain Test Evaluated by Digital Image Correlation Method (디지털 이미지 코릴레이션 기법으로 평가한 평면변형률 시험의 단부 구속 효과)

  • Jang, Eui-Ryong;Choo, Yoon-Sik;Lee, Won-Taeg;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.22-33
    • /
    • 2008
  • The plane strain test has been used widely in order to examine the stress-strain relation and failure behavior. Its advantages are more realistic simulation of deformation and failure behaviors of soils. Most plane strain tests have been carried out with restrained end plates due to difficulties in manufacturing the equipment with free end condition and also performing it. In this study, plane strain tests with/without bottom plate restraint were performed on Jumunjin-sand. The measurement of overall and local deformation was accomplished by digital image correlation technique as well as external LVDT. By applying digital image correlation method using two consecutive images captured through the transparent wall, local deformation behavior of various parts inside the specimen was estimated. From digital image analysis result, the restrained effect of end plate was examined about formation and development of shear band, and deformation mechanism of sand under plane strain condition.

  • PDF

Parametric study of shear strength of CFRP strengthened end-web panels

  • Shalaby, Haitham A.;Hassan, Maha M.;Safar, Sherif S.
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.159-172
    • /
    • 2019
  • Strengthening of civil infrastructure with advanced composites have recently become one of the most popular methods. The use of Fiber Reinforced Polymer (FRP) strips plates and fabric for strengthening of reinforced concrete structures has well established design guidelines and standards. Research on the application of FRP composites to steel structures compared to concrete structures is limited, especially for shear strengthening applications. Whereas, there is a need for cost-effective system that could be used to strengthen steel high-way bridge girders to cope with losses due to corrosion in addition to continuous demands for increasing traffic loads. In this study, a parametric finite element study is performed to investigate the effect of applying thick CFRP strips diagonally on webs of plate girders on the shear strength of end-web panels. The study focuses on illustrating the effect of several geometric parameters on nominal shear strength. Hence, a formula is developed to determine the enhancement of shear strength gained upon the application of CFRP strips.

Tensile capacity of mortar-filled rectangular tube with various connection details

  • Kim, Chul-Goo;Kang, Su-Min;Eom, Tae-Sung;Baek, Jang-Woon
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.339-351
    • /
    • 2022
  • A mortar-filled rectangular hollow structural section (RHS) can increase a structural section property as well as a compressive buckling capacity of a RHS member. In this study, the tensile performance of newly developed mortar-filled RHS members was experimentally evaluated with various connection details. The major test parameters were the type of end connections, the thickness of cap plates and shear plates, the use of stud bolts, and penetrating bars. The test results showed that the welded T-end connection experienced a brittle weld fracture at the welded connection, whereas the tensile performance of the T-end connection was improved by additional stud bolts inserted into the mortar within the RHS tube. For the end connection using shear plates and penetrating stud bolts, ductile behavior of the RHS tube was achieved after yielding. The penetrating bars increased load carrying capacity of the RHS. Based on the analysis of the load transfer mechanism, the current design code and test results were compared to evaluate the tensile capacity of the RHS tube according to the connection details. Design considerations for the connections of the mortar-filled RHS tubes were also recommended.

Morphological Transformation of Shock Waves Behind a Flat Plate

  • Chang, Se-Nyong;Lee, Soogab;Chang, Keun-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.665-670
    • /
    • 2001
  • The interaction of a travelling shock with the shear layer of a flat plate is studied computationally. The Euler and Navier-Stokes equations are solved numerically on quadrilateral unstructured adaptive grids. The flat plate is installed horizontally on the central axis of a shock tube. The shear layer is first created by two shock waves at different speeds splitted by a flat plate. A series of small vortices is developed as a consequence in the shear layer. The shock wave reflected at the end wall impinges the shear layer. The complicated shock dynamics in the evolution to the pseudo-steady state is represented with the morphological transformation of a planar shock into an oblique shock.

  • PDF

Studies on Stress Distribution at the end of the Bonded Strengtening Plate (접착 보강부재 단부에서의 응력분포에 관한 연구)

  • 김지선;김경원;한만엽;정영수;홍영균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.129-134
    • /
    • 1996
  • Bonding strength of reinforcing material has been recognized to be the most important factor which determines the strengthening effect and the durability of repair work. The properties of bonding layers affects the stress distribution at the end of the plate, therefore the behavior of bonding layer has to be investigated. In this study, the stress distribution at the end of the bonded plate has been tested and compared with Roberts' analysis. Shear stress and vertical normal stress at the end of strengtening plate are analysized and the effedts of bonding layer thickness, plate thickness and plate length on the bonding behavior are tested. The test results showed that thickness is one of the most important factor, which is the thinner the thickness, the smaller the maximum stress.

  • PDF

Analysis of end-plate connections at elevated temperatures

  • Lin, Shuyuan;Huang, Zhaohui;Fan, Mizi
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.81-101
    • /
    • 2013
  • In this paper a robust 2-noded connection element has been developed for modelling the bolted end-plate connection between steel beam and column at elevated temperatures. The numerical procedure described is based on the model proposed by Huang (2011), incorporating additional developments to more precisely determinate the tension, compression and bending moment capacities of end-plate connection in fire. The proper failure criteria are proposed to calculate the tension capacity for each individual bolt row. In this new model the connection failure due to bending, axial tension, compression and shear are considered. The influence of the axial force of the connected beam on the connection is also taken into account. This new model has the advantages of both the simple and component-based models. In order to validate the model a total of 22 tests are used. It is evident that this new connection model has ability to accurately predict the behaviour of the end-plate connection at elevated temperatures, and can be used to represent the end-plate connections in supporting performance-based fire resistance design of steel-framed composite buildings.

An Experimental Study on Ultimate Behavior of Thin-walled Carbon Steel Bolted Connections with Varying Plate Thickness and End Distance (평판두께와 연단거리를 변수로 갖는 박판탄소강 볼트접합부의 종국거동에 관한 실험적 연구)

  • Lee, Yong Taeg;Kim, Tae Soo;Jeong, Ha Young;Kim, Seung Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.527-536
    • /
    • 2009
  • The purpose of this experimental study was to investigate the block shear fracture behavior and curling effect on a single shear-bolted connection in thin-walled carbon steel fabricated with four bolts. The specimens that fail by block shear were planned to have a constant dimension of the edge distance perpendicular to the loading direction, bolt diameter, pitch, and gage. The main variables of the specimens were plate thickness and end distance parallel to the loading direction. A monotonic tensile test was carried out for the bolted connections, and the ultimate behaviors, such as the fracture shape, ultimate strength, and curling, were compared with those that had been predicted using the current design specifications. The conditions of curling occurrence in terms of plate thickness and end distance were also investigated, and the strength reduction due to curling was considered.