• Title/Summary/Keyword: shear effect

Search Result 4,365, Processing Time 0.034 seconds

Mechanical Properties and Fabric Handle of Hansan Ramie (PartII) (한산모시의 역학적 특성 및 태에 관한 연구(제2보)-푸새효과에 대하여-)

  • 홍지명;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.7
    • /
    • pp.862-871
    • /
    • 1998
  • In this study, the effect of sizing on the physical and mechanical characteristics of Hansan ramie was studied. 2 kinds of Hansan ramie were used for this study and one kind of the chinese ramie was also used for comparing with the characteristics of Hansan ramies. The following results were obtained from this experimental study. The wrinkle recovery angle was gradually reduced according to the increasing of the concentration of sizing agent. As the size agent could easily penetrate between the thick yarms, the effect of sizing on the wrinkle recovery angle was evident on the Chinese and Hansan coarse ramie. The result of KES-F system showed that the sizing affected much on the bending properties and shear properties. As the size concentration was increased the shear properties were increased more evidently on the Chinese and Hansan coarse ramie. The result of KES-F system showed that the sizing affected much on the bending properties and shear properties. As the size concentration was increased the shear properties were increased more evidently than the bending properties. The other mechanical properties didn't changed much by sizing. The calculated primary hand value also showed that the ramie became more stiff after sizing.

  • PDF

Effect of Sunshine Treatment on Strength in Al 6061/AFRP Hybrid Composite (Al 6061/AFRP 하이브리드 복합재료의 강도특성에 미치는 내후성 영향)

  • 윤한기;김연겸;차영준
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.31-39
    • /
    • 1997
  • This research is to evaluate the effect of sunshine treatment on the strength in the Al 6061/AFRP hybrid composite(APAL). APAL specimens were processed by autoclave curing system under the constant condition of curing temperature, time and aluminum surface pertreatment. Aramid patched aluminum alloy can be widely used for the repair of the damage part of the aircraft. The tensile strength of the sunshine treated APAL 2P and 6P composite is 14%, 22% smaller than that of the non-treated material. The interlaminar shear strength of the APAL specimens for the adhesive length of 5mm is 24% higher than that of the APAL for the adhesive length of 10mm. In the case of APAL DS 1P material, interlaminar shear strength of the specimen which was sunshine treated for 200 hours is 21% smaller than that of the non-treated material while interlaminar shear strength of the specimen which was immersed in a 70.deg. C fresh water for 1200 hours decreases by 75.7%.

  • PDF

A Study on Distinct Element Modelling of Dilatant Rock Joints (팽창성 암석절리의 개별요소 모델링에 관한 연구)

  • 장석부;문현구
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The behavior of a jointed rock mass depends mainly on the geometrical and mechanical properties of joints. The failure mode of a rock mass and kinematics of rock blocks are governed by the orientation, spacing, and persistence of joints. The mechanical properties such as dilation angle, shear strength, maximum closure, strength of asperities and friction coeffiient play important roles on the stability and deformation of the rock mass. The normal and shear behaviour of a joint are coupled due to dilation, and the joint deformation depends also on the boundary conditions such as stiffness conditons. In this paper, the joint constitutive law including the dilatant behaviour of a joint is numerically modelled using the edge-to-edge contact logic in distinct element method. Also, presented is the method to quantify the input parameters used in the joint law. The results from uniaxial compression and direct shear tests using the numeical model of the single joint were compared to the analytic results from them. The boundary effect on the behaviour of a joint is verified by comparing the results of direct shear test under constant stress boundary condition with those under constant stiffness boundary condition. The numerical model developed is applied to a complex jointed rock mass to examine its performance and to evaluate the effect of joint dilation on tunnel stability.

  • PDF

Study on the Spinning Processes Combined with Shear and Shrinking Deformation (전단 및 교축변형이 조합된 복합스피닝 공정에 관한 연구)

  • 이항수;강정식
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.507-519
    • /
    • 1999
  • An approach using the energy method has veen proposed for the analysis of cone spinning having the complicated deformation modes mixed by shear and normal deformation. In the proposed method, the corresponding solution is found through optimization of the total energy dissipation with respect to the parameters assumed by the velocity field defined as the variation of the length in longitudinal direction. The sheet blank is divided into three layers to consider the bending effect and the energy dissipated by shear deformation is superposed to the energy consumption due to normal deformation related with the shrinking deformation is superposed to the energy consumption due to normal deformation related with the shrinking deformation of axi-symmetric sheet element for the evaluation of total deformation energy. In order to check the validity of the proposed method, the complex spinning for making the conical cup is analyzed and the computed results are compared with the experimental results. In comparison of the computed results with existing experimental results,, the good agreement is obtained for the variation of outer radius and the distribution of thickness, and it has thus been shown that the present approach is applicable to the analysis of complex spinning.

  • PDF

Analysis of R/C frames considering cracking effect and plastic hinge formation

  • Kara, Ilker Fatih;Ashour, Ashraf F.;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.669-681
    • /
    • 2017
  • The design of reinforced concrete buildings must satisfy the serviceability stiffness criteria in terms of maximum lateral deflections and inter story drift in order to prevent both structural and non-structural damages. Consideration of plastic hinge formation is also important to obtain accurate failure mechanism and ultimate strength of reinforced concrete frames. In the present study, an iterative procedure has been developed for the analysis of reinforced concrete frames with cracked elements and consideration of plastic hinge formation. The ACI and probability-based effective stiffness models are used for the effective moment of inertia of cracked members. Shear deformation effect is also considered, and the variation of shear stiffness due to cracking is evaluated by reduced shear stiffness models available in the literature. The analytical procedure has been demonstrated through the application to three reinforced concrete frame examples available in the literature. It has been shown that the iterative analytical procedure can provide accurate and efficient predictions of deflections and ultimate strength of the frames studied under lateral and vertical loads. The proposed procedure is also efficient from the viewpoint of computational time and convergence rate. The developed technique was able to accurately predict the locations and sequential development of plastic hinges in frames. The results also show that shear deformation can contribute significantly to frame deflections.

Static and fatigue performance of stud shear connector in steel fiber reinforced concrete

  • Xu, Chen;Su, Qingtian;Masuya, Hiroshi
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.467-479
    • /
    • 2017
  • The stud is one of the most frequently used shear connectors which are important to the steel-concrete composite action. The static and fatigue behavior of stud in the steel fiber reinforced concrete (SFRC) were particularly concerned in this study through the push-out tests and analysis. It was for the purpose of investigating and explaining a tendency proposed by the current existing researches that the SFRC may ameliorate the shear connector's mechanical performance, and thus contributing to the corresponding design practice. There were 20 test specimens in the tests and 8 models in the analysis. According to the test and analysis results, the SFRC had an obvious effect of restraining the concrete damage and improving the stud static performance when the compressive strength of the host concrete was relatively low. As to the fatigue aspect, the steel fibers in concrete also tended to improve the stud fatigue life, and the favorable tensile performance of SFRC may be the main reason. But such effect was found to vary with the fatigue load range. Moreover, the static and fatigue test results were compared with several design codes. Particularly, the fatigue life estimation of Eurocode 4 appeared to be less conservative than that of AASHTO, and to have higher safety redundancy than that of JSCE hybrid structure guideline.

Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads

  • Hamed, Mostafa A.;Mohamed, Salwa A;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.75-89
    • /
    • 2020
  • The current paper illustrates the effect of in-plane varying compressive force on critical buckling loads and buckling modes of sandwich composite laminated beam rested on elastic foundation. To generalize a proposed model, unified higher order shear deformation beam theories are exploited through analysis; those satisfy the parabolic variation of shear across the thickness. Therefore, there is no need for shear correction factor. Winkler and Pasternak elastic foundations are presented to consider the effect of any elastic medium surrounding beam structure. The Hamilton's principle is proposed to derive the equilibrium equations of unified sandwich composite laminated beams. Differential quadrature numerical method (DQNM) is used to discretize the differential equilibrium equations in spatial direction. After that, eigenvalue problem is solved to obtain the buckling loads and associated mode shapes. The proposed model is validated with previous published works and good matching is observed. The numerical results are carried out to show effects of axial load functions, lamination thicknesses, orthotropy and elastic foundation constants on the buckling loads and mode shapes of sandwich composite beam. This model is important in designing of aircrafts and ships when non-uniform compressive load and shear loading is dominated.

A discussion on simple third-order theories and elasticity approaches for flexure of laminated plates

  • Singh, Gajbir;Rao, G. Venkateswara;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.121-133
    • /
    • 1995
  • It is well known that two-dimensional simplified third-order theories satisfy the layer interface continuity of transverse shear strains, thus these theories violate the continuity of transverse shear stresses when two consecutive layers differ either in fibre orientation or material. The third-order theories considered herein involve four/or five dependent unknowns in the displacement field and satisfy the condition of vanishing of transverse shear stresses at the bounding planes of the plate. The objective of this investigation is to examine (i) the flexural response prediction accuracy of these third-order theories compared to exact elasticity solution (ii) the effect of layer interface continuity conditions on the flexural response. To investigate the effect of layer interface continuity conditions, three-dimensional elasticity solutions are developed by enforcing the continuity of different combinations of transverse stresses and/or strains at the layer interfaces. Three dimensional twenty node solid finite element (having three translational displacements as degrees of freedom) without the imposition of any of the conditions on the transverse stresses and strains is also employed for the flexural analysis of the laminated plates for the purposes of comparison with the above theories. These shear deformation theories and elasticity approaches in terms of accuracy, adequacy and applicability are examined through extensive numerical examples.

A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium

  • Aissani, Khadidja;Bouiadjra, Mohamed Bachir;Ahouel, Mama;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.743-763
    • /
    • 2015
  • This work presents a new nonlocal hyperbolic shear deformation beam theory for the static, buckling and vibration of nanoscale-beams embedded in an elastic medium. The present model is able to capture both the nonlocal parameter and the shear deformation effect without employing shear correction factor. The nonlocal parameter accounts for the small size effects when dealing with nanosize structures such as nanobeams. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanoscale-beam are obtained using Hamilton's principle. The effect of the surrounding elastic medium on the deflections, critical buckling loads and frequencies of the nanobeam is investigated. Both Winkler-type and Pasternak-type foundation models are used to simulate the interaction of the nanobeam with the surrounding elastic medium. Analytical solutions are presented for a simply supported nanoscale-beam, and the obtained results compare well with those predicted by the other nonlocal theories available in literature.

A Study of Aging Effect for Train Carbody Using Accelerated Aging Tester

  • Nam, Jeong-Pyo;LI, Qingfen;LI, Hong
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.113-116
    • /
    • 2008
  • The long-tenn exposure of polymeric composite materials to extreme-use environments, such as pressure, temperature, moisture, and load cycles, results in changes in the original properties of the material. In this study, the effect of combined environmental factors such as ultraviolet ray, high temperature and high moisture on mechanical and thermal analysis properties of glass fabric and phenolic composites are evaluated through a 2.5 KW accelerated environmental aging tester. The environmental factors such as temperature, moisture and ultraviolet ray applied of specimens. A xenon-arc lamp is utilized for ultraviolet light and exposure time of up to 3000 hours are applied. Several types of specimens - tensile, bending, and shear specimens that are warp direction and fill direction are used to investigate the effects of environmental factors on mechanical properties of the composites. Mechanical degradations for tensile, bending and shear properties are evaluated through a Universal Testing Machine (UTM). Also, storage shear modulus, loss shear modulus and tan a are measured as a function of exposure time through a Dynamic Mechanical Analyzer (DMA). From the experimental results, changes in material properties of glass fabric and phenolic composites are shown to be slightly degraded due to combined environmental effects.

  • PDF