• 제목/요약/키워드: shear effect

Search Result 4,334, Processing Time 0.031 seconds

Interfacial Adhesion Properties of Oxygen Plasma Treated Polyketone Fiber with Natural Rubber (폴리케톤 섬유의 산소 플라즈마 처리에 따른 천연고무와의 계면접착 특성)

  • Won, Jong Sung;Choi, Hae Young;Yoo, Jae Jung;Choi, Han Na;Yong, Da Kyung;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • Recently developed polyketone fiber has various applications in the mechanical rubber goods as reinforcement because of its good mechanical properties. However, its surface is not suitable for good adhesion with the rubber matrix. Thus, a surface modification is essential to obtain the good interfacial adhesion. Plasma treatment, in this study, has been conducted to modify the surface of the polyketone fiber. The morphological changes of the fibers by oxygen plasma treatment were observed by using SEM and AFM. The chemical composition changes of PK fiber surface treated with oxygen plasma were investigated using an XPS (X-ray photoelectron spectroscopy). Finally, the effect of these changes on the interfacial adhesion between fiber and rubber was analyzed by using a microdroplet debonding test. By the plasma treatment, oxygen moieties on the fiber surface increased with processing time and power. The surface RMS roughness increases until the proper processing condition, but a long plasma processing time resulted in a rather reduced roughness because of surface degradation. When the treatment time and power were 60 s and 80 W, respectively, the highest interfacial shear strength (IFSS) was obtained between the PK fiber and natural rubber. However, as the treatment time and power were higher than 60 s and 80 W, respectively, the IFSS decreased because of degradation of the PK fiber surface by severe plasma treatment.

Effect of Feeding of Citrus Byproduct on the Physicochemical Properties and Palatability of Pork Loin during Growing Period (성장기에 급여한 감글 부산물이 돈육등심의 이화학적 특성 및 기호성에 미치는 영향)

  • Jung, In-Chul;Moon, Yoon-Hee;Yang, Sung-Joo
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1164-1168
    • /
    • 2006
  • This study was carried out to investigate the possible for utilization of garbage in pig feed by investigating the functional characteristics of pork from pigs fed dried citrus byproduct. The samples consisted of the pork loin from pigs not fed with dried citrus pulp (DCP-0) and fed with 6% and 10% dried citrus pulp during growing and fattening period (DCP-1) there is no respective comparison here The pH, VBN content, TBARS value, bacterial counts, surface color, water holding capacity, loss degree and rheological properties of the samples were determined by physicochemical properties, and the sensory scores were evaluated. The pH, VBN content, surface color, water holding capacity and loss degree were not different between the samples, but the TBARS value and bacterial counts of DCP-1 were significantly lower than those of the DCP-0 (p<0.05). The cohesiveness, gumminess, chewiness, shear forte value, taste, flavor, tenderness, juiciness and palatability were not different between the samples, but the hardness of DCP-0 was higher than that of the DCP-1 and the springiness of DCP-1 was higher than that of the DCP-0 (p<0.05).

Examination of the Relationship between Average Particle Size and Shear Strength of Granite-derived Weathered Soils through 2-D Distinct-element Method (이차원 개별요소 수치해석을 통한 화강풍화토의 평균입자크기와 전단강도의 관계 규명)

  • Kim, Seon-Uk;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.77-86
    • /
    • 2012
  • We have carried out a series of numerical experiments to study the effect of average particle size on the mechanical properties of granite-derived weathered soils. A distinct-element method was adopted to study the changes in macro-scale mechanical properties with particle size and maximum-to-minimum particle size ratio. The numerical soil specimen with cohesion values of 0.25 MPa and internal friction angle of 29 degrees was prepared for reference. While keeping the porosity values constant, we varied particle size and size distribution to study how cohesion and internal friction angle changes. The experimental results show that the values of cohesion apparently decrease with increasing particle size. Changes in the values of internal friction angles are small, but there is a trend of increase in internal friction angle as the average particle size increases. This study demonstrates a possibility that the results of numerical experiments of this type may be used for rapid estimation of mechanical properties of granite-derived weathered soils. For example, when mechanical properties obtained through in situ tests and particle size data obtained through lab analysis are available for a site, it is expected that the mechanical properties of weathered granite soils with varying degrees of weathering (thus, varying particle size) may be estimated rapidly only with particle size data for that site.

Parametric Study of Dynamic Soil-pile-structure Interaction in Dry Sand by 3D Numerical Model (3차원 수치 모델을 이용한 건조사질토 지반-말뚝-구조물 동적 상호작용의 매개변수 연구)

  • Kwon, Sun-Yong;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.51-62
    • /
    • 2016
  • Parametric studies for various site conditions by using 3d numerical model were carried out in order to estimate dynamic behavior of soil-pile-structure system in dry soil deposits. Proposed model was analyzed in time domain using FLAC3D which is commercial finite difference code to properly simulate nonlinear response of soil under strong earthquake. Mohr-Coulomb criterion was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling was used as boundary condition to reduce analysis time. Also, initial shear modulus and yield depth were appropriately determined for accurate simulation of system's nonlinear behavior. Parametric study was performed by varying weight of superstructure, pile length, pile head fixity, soil relative density with proposed numerical model. From the results of parametric study, it is identified that inertial force induced by superstructure is dominant on dynamic behavior of soil-pile-structure system and effect of kinematic force induced by soil movement was relatively small. Difference in dynamic behavior according to the pile length and pile head fixity was also numerically investigated.

Comparison of Methods Predicting VS30 from Shallow VS Profiles and Suggestion of Optimized Coefficients (얕은 심도 VS주상도를 활용한 VS30 예측 방법론 비교 및 최적 계수 제시)

  • Choi, Inhyeok;Kwak, Dongyoup
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.3
    • /
    • pp.15-23
    • /
    • 2020
  • Ground motion models predicting intensity measures on surface use a time-averaged shear wave velocity, VS30, as a key variable simulating site effect. The VS30 can be directly estimated from VS profiles if the profile depth (z) is greater than or equal to 30 m. However, some sites have VS profiles with z < 30 m. In this case VS30 can be predicted using extension models. This study proposes new coefficient sets for existing prediction equations using 297 Korea VS profiles. We have collected VS profiles from KMA and Geoinfo database. Fitting six existing methods to data, we suggest new coefficients for each method and evaluate their performance. It turns out that if z ≥ 15 m, the standard deviation (σ) of residual in log10 is 0.061, which indicates that the estimated VS30 is nearly accurate. If z < 15 m, the σ keeps increasing up to 0.1 for z = 5 m, so we caution the use of models at very low z. Nonetheless, we recommend investigating up to 30 m depth for VS30 calculation if possible.

Effect of Feeding of Citrus Byproducts on Physicochemical and Sensory Characteristics of Chicken Meat (감귤부산물 급여가 닭고기의 이화학적 특성 및 관능적 특성에 미치는 영향)

  • Moon, Yoon-Hee;Jung, In-Chul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.6
    • /
    • pp.766-772
    • /
    • 2009
  • In this study, the effects of feeding citrus byproduct on physicochemical and sensory characteristics of chicken meats were investigated. The samples consisted of chicken meats provided with only feed for laying hen without citrus byproduct (T-0), and the chicken meats fed with 1.0%, 1.5% and 2.0% citrus byproduct during the starter (initial period feed; $1{\sim}9th$ day), the grower (middle period feed; $10{\sim}24th$ day), and the finisher (latter period feed; $25{\sim}36th$ day), respectively. The $L^*$ value of thigh was significantly lower in the T-1 than in the T-0, the $a^*$ value was significantly higher in the T-1 than in the T-0 (p<0.05). The water holding capacity of thigh was significantly higher in the T-1 than in the T-0 and the cooking loss was significantly higher in the T-0 than in the T-1 (p<0.05). The acid value was significantly higher in the T-0 than in the T-1 (p<0.05). Antioxidant activity was higher in the T1 than in the T-0 (p<0.05). There was no significance between T-0 and T-1 regardless of feeding citrus byproduct, in terms of chicken's $b^*$ value, frozen loss, thawing loss, hardness, springiness, cohesiveness, gumminess, chewiness, shear force, free amino acid content of hot water extracts, taste, flavor, tenderness, juiciness and palatability.

Experimental Studies of Shearing Properties on Compacted Nakdong River Silty Sands under Unconsolidated Undrained Condition (비압밀비배수조건에서 다져진 낙동강 실트질 모래의 전단거동에 대한 실험적 연구)

  • Khin, Swe Tint;Kim, Young-Su
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.57-62
    • /
    • 2010
  • In this study, the effect of different silt contents on the shear characteristics of silty sands was evaluated. Two series of triaxial compression tests were performed on the cylindrical specimens of compacted Nakdong river sand with 10% and 30% silt contents under unconsolidated undrained condition. All identical specimens were prepared to compact with same initial water content for five layers and saturated using control panel and then sheared under initial effective confining pressure, 100 to 400kPa. All specimens exhibited a strain softening tendency after failure in stress-strain curves and deviator stresses of specimens with 10% silt content were greater than those of specimens with 30% silt content. Pore water pressures of specimens with 10% silt content were observed negative(i.e. swelling) due to increasing void ratio after failure but those of specimens with 30% silt content were shown only positive. The behavior of compacted cylindrical specimens with low silt content was more dilative than that of high silt content. Peak deviator stresses decreased as increasing silt content and peak pore water pressures increased as increasing silt content.

Typical Seismic Intensity Calculation for Each Region Using Site Response Analysis (부지응답해석을 이용한 지역별 대표 진도 산출 연구)

  • Ahn, Jae-Kwang;Son, Su-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 2020
  • Vibration propagated from seismic sources has damping according to distance and amplification and reduction characteristic in different regions according to topography and geological structure. The vibration propagated from the seismic source to the bedrock is largely affected by the damping according to the separation distance, which can be simply estimated through the damping equation. However, it is important to grasp geological information by location because vibration estimation transmitted to the surface are affected by the natural period of the soil located above the bedrock. Geotechnical investigation data are needed to estimate the seismic intensity based on geological information. If there is no Vs profile, the standard penetration tests are mainly used to determine the soil parameters. The Integrated DB Center of National Geotechnical Information manages the geotechnical survey data performed on the domestic ground, and there is the standard penetration test information of 400,000 holes. In this study, the possibility of quantitation the amplification coefficient for each region was examined to calculated the physical interactive seismic intensity based on geotechnical information. At this time, the shear wave column diagram was generated from the SPT-N value and ground response analysis was performed in the target area. The site coefficients for each zone and the seismic intensity distribution for the seismic motion present a significant difference according to the analysis method and the regional setting.

Finite Element Analysis for the Contact Stress of Ultra-high Molecular Weight Polyethylene in Total Knee Arthroplasty (전 슬관절 치환 성형술에 사용되는 초고분자량 폴리에틸렌 삽입물의 접촉응력에 관한 유한요소해석)

  • Jo, Cheol-Hyeong;Choe, Jae-Bong;Choe, Gwi-Won;Yun, Gang-Seop;Gang, Seung-Baek
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 1999
  • Because of bone resorption, wear of ultra-high molecular weight polyethylene(UHMWPE) in total knee arthroplasty has been recognized as a major factor in long-term failure of knee implant. The surface damage and the following harmful wear debris of UHMWPE is largely related to contact stress. Most of the previous studies focused on the contact condition only at the articulating surface of UHMWPE. Recently, contact stress at the metal-backing interface has been implicated as one of major factors in UHMWPE wear. Therefore, the purpose of the is study is to investigate the effect of the contact stress for different thickness, conformity friction coefficient, and flexion degree of the UHMWPE component in total knee system, considering the contact conditions at both interfaces. In this study, a two-dimensional non-linear plane strain finite element model was developed. The results showed that the maximum value of von-Mises stress occurred below the articulating surface and the contact stress was lower for the more conforming models. All-polyethylene component showed lower stress distribution than the metal-backed component. With increased friction coefficient on the tibiofemoral contact surface, the maximum shear stress increased about twofold.

  • PDF

The study on the Crushability of Weathered Cranite Soils (화강암질 풍화토의 파쇄성에 관한 연구)

  • 도덕현;강우묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.2
    • /
    • pp.81-103
    • /
    • 1979
  • The weathered granite soil involves problems in its stability in soil structures depending upon the reduction of soil strength due to the water absorption, crushability, and content of colored mineral and feldspar. As an attemt to solve the problems associated with soil stability, the crushability of weathered granite soil was investigated by conducting tests such as compaction test, CBR test, unconfined compression test, direct shear test, triaxial compression test, and permeability test on the five soil samples different in weathering and mineral compositions. The experimental results are summarized as follows: The ratio of increasing dry density in the weathered granite soil was high as the compaction energy was low, while it was low as the compaction energy was increased. The unconfined compressive strength. and CBR value were highest in the dry side rather than in the soil with the optimum moisture content, when the soil was compacted by adjusting water content. However, the unconfined compressive strength of smples, which were compacted and oven dried, were highest in the wet side rather than in soil with the optimum moisture content. As the soil becomes coarse grain, the ratio of specific surface area increased due to increased crushability, and the increasing ratio of the specific surface area decreased as the compaction energy was increased. The highest ratio of grain crushability was attained in the wet side rather than in the soil with the optimum moisture content. Such tendency was transforming to the dry side as the compaction energy was increased. The effect of water on the grain crushability of soil was high in the coarse grained soil. The specific surface area of WK soil sample, when compacted under the condition of air dried and under the optimum moisture content, was constant regardless of the compaction energy. When the weathered granite soil and river sand with the same grain size were compacted with low compaction energy, the weathered granite soil with crushability had higher dry density than river sand. However, when the compaction energy reached to certain point over limitation, the river sand had higher dry density than the weathered granite soil. The coefficient of permeability was lowest in the wet side rather than in the optimum moisture content, when the soil was compacted by adjusting soil water content. The reduction of permeability of soil due to the compaction was more apparent in the weathered granite soil than in the river sand. The highly significant correlation coefficient was obtained between the amount of particle breakage and dry density of the compacted soil.

  • PDF