• 제목/요약/키워드: shear effect

Search Result 4,334, Processing Time 0.035 seconds

EFFECT OF INTERMEDIATE RESIN HYDROPHILICITY ON BOND STRENGTH OF SINGLE STEP ADHESIVE (중간레진의 친수성이 상아질 접착에 미치는 영향)

  • Kim, Yong-Sung;Park, Sang-Hyuk;Choi, Gi-Woon;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.5
    • /
    • pp.445-458
    • /
    • 2007
  • The purpose of this study was to evaluate the bond strength of a new Single step system with different curing mode composites, and to evaluate the effect of the intermediate resins which have different hydrophilicity on bonding ability by means of the micro shear bond testing and TEM examination for the adhesive interface. The adhesive used in this study was an experimental single step system (Bisco Inc., Schaumburg IL). Experimental groups were produced by using six kinds of intermediate resin having different hydrophilicity that was hydrophilic, hydrophobic and most hydrophobic resin and as filled or not after applying adhesive. Each experimental group was further divided into two subgroups whether the adhesive was light cured or not. Dual cured composite (Bis Core, Bisco Ltd., Schaumburg, IL) was placed on the adhesive layer as light cure or self cure mode. The results or bond strength were statistically analyzed using one way ANOVA and multiple comparisons are made using Tukey's test at ${\alpha}\;<\;0.05$ level. The results of this study were as follows ; 1. The application of intermediate resin did not increase the bond strength for light cured composite. 2. The bond strength of an experimental adhesive with self cured composite was significantly increased by the application of intermediate resin layer. 3. The bond strength of adhesive was irrespective of the cure or not of itself before intermediate resin layer applied. 4. As applied hydrophilic resin layer was, the initial bond strength was higher than both hydrophobic and most hydrophobic one used but there was no significance. Using a single step adhesive with dual/self cured composite, the incompatibility between both of them should be solved by the application of intermediate hydrophobic resin to reduce the adhesive permeability. However, Single step adhesive can be used in the light cured composite restoration without any decrease of the initial bond strength.

EFFECT OF APPLICATION METHODS OF A SELF-ETCHING PRIMER ADHESIVE SYSTEM ON ENAMEL BOND STRENGTH (자가부식 프라이머 접착제의 적용방식이 법랑질의 결합강도에 미치는 영향)

  • Park, Jae-Gu;Cho, Kwon-Hwan;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.90-97
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of passive or active application of primer and coat times of bond on the shear bond strength when a self-etching primer adhesive (Clearfil SE Bond) was applied to enamel surface. Crowns of sixteen human molars were selected. Buccal and lingual enamels of crowns were partially exposed and slabs of 1.2 mm thick were made. They were divided into one of four equal groups (n = 8). Group 1: passive application of Primer and 1 coat of Bond, Group 2: active application of Primer and 1 coat of Bond, Group 3: passive application of Primer and 2 coats of Bond, Group 4: active application of Primer and 2 coats of Bond. Clearfil AP-X was bonded to enamel suface of each group using Tygon tubes. The bonded specimens were subjected to microshear bond strength (uSBS) testing with a crosshead speed of 1 mm/min. The results of this study were as follows; 1. The uSBS of Group 1 was the lowest among groups and the uSBS of Group 4 was the highest. 2. There was not statistically significant interaction between enamel uSBS by application method of Primer and coat time of Bond (p > 0.05). 3. There was not statistically significant difference between enamel uSBS by passive and active application of Primer (p > 0.05). 4. There was statistically significant difference between enamel uSBS by one- and two-coat of Bond (p < 0.05).

A Study on Dynamic Pile-Soil-Structure Interactions (말뚝-지반-구조물의 동섬 상호작용 연구)

  • Lee, In-Mo;Lee, Gwan-Ho;Kim, Yong-Jin
    • Geotechnical Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-52
    • /
    • 1991
  • A study of the effects of dynamic pile-soil-structure interactions on the response of super- structures, supported by group piles, are presented in this paper. The dynamic impedance functions of single pile generated by soil-pile interactions are obtained and compared among others using the methods proposed by Novak, Gazetas, and Kuhlemeyer, and using the equivalent cantilever method. Group pile effects are also considered by the following approaches : neglecting interaction effects : group efficiency ratio concept : static interaction approach . and dynamic interaction approach. The responses of a nuclear containment structure are obtained by using the elastic half-space analysis, based on the impedance functions mentioned above. Main conclusions drawn from this study are as follows : 1. The numerical results of the impedance functions calculated by each method were quite different : the Novak's was the smallest, and the Kuhlemeyer's the highest. Considering group effects, similar values in each approach were obtained for the stiffness : the difference was very big for the damping. 2. The top displacement of the structure was reduced by 20% or more by pile installations. However, the base shear force, the base moment, and the resonance frequency were increased by more than two times due to stiffening effect of the ground by pile installations. 3. Whether frequency dependant impedence functions or frequency independant functions were used, the responses of the structure were not so much affected by the choice of the impedance functions. 4. The reduction effect of the top displacement increased with the increase of the maximum ground acceleration.

  • PDF

Fundamental Study on the Reinforcing Effect of Reinforced Clayey Soil with Nonwoven-geotextile (부직포 보강 점성토의 보강효과에 관한 기초적 연구)

  • 김유성;이재열
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.61-76
    • /
    • 1998
  • Various kinds of reinforced soil methods have been developed by many researchers or companies for their economic merits mainly. These methods have generally used sandy soils which have high permeability as embanking or backfill material. That is because, if poor embanking materials, especially like a clayey soil which has very low permeability, are used in a reinforced soil embanking, and if excessive pore water pressure is produced by external factors, the friction resistance between reinforcing members and Boils decrease, as a result possible damage or collapse of the body of a reinforced embankment. In fact, clayey Boils can also be used as a embanking materials with reinforcement which has high permeable capacity, and are expected to be able to dissipate the excess pore water pressure effectively. In this study reinforcing effects have been examined through a serries of direct shear tests in which clayey soils are reinforced with nonwoven geotextiles of which permeability is very high and tensile strength is relatively weaker than geogrids which are usually used in reinforced soil wall. Even though such nonwoven geotextile are used as reinforcement of high saturated clayey soils. the test results show the possibility that nonwoven geoteztiles could be used as a reinforcement for reinforced soil walls effectively.

  • PDF

Pinching and Energy Dissipation Capacity of Flexure-Dominated RC Members (휨지배 철근콘크리트 부재의 핀칭과 에너지 소산능력)

  • Park, Hong-Gun;Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.594-605
    • /
    • 2003
  • Pinching is an important property of reinforced concrete member which characterizes its cyclic behavior. In the present study, numerical studies were performed to investigate the characteristics of pinching behavior and the energy dissipation capacity of flexure-dominated reinforced concrete members. By investigating existing experiments and numerical results, it was found that flexural pinching which has no relation with shear action appears in RC members subject to axial compression force. However, members with specific arrangement and amount of re-bars, have the same energy dissipation capacity regardless of the magnitude of the axial force applied even though the shape of the cyclic curve varies due to the effect of the axial force. This indicates that concrete as a brittle material does not significantly contribute to the energy dissipation capacity though its effect on the behavior increases as the axial force increases, and that energy dissipation occurs primarily by re-bars. Therefore, the energy dissipation capacity of flexure-dominated member can be calculated by the analysis on the cross-section subject to pure bending, regardless of the actual compressive force applied. Based on the findings, a practical method and the related design equations for estimating energy dissipation capacity and damping modification factor was developed, and their validity was verified by the comparisons with existing experiments. The proposed method can be conveniently used in design practice because it accurately estimates energy dissipation capacity with general design parameters.

Bond Behavior between Parent Concrete and Carbon Fiber Mesh (탄소섬유메쉬와 콘크리트의 부착거동)

  • Yun, Hyun-Do;Sung, Soo-Yong;Oh, Jae-Hyuk;Seo, Soo-Yeon;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.769-777
    • /
    • 2003
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Because carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of enhancing bond of CFM. Therefore if bond strength is sufficient, it will be expect to enhance reinforcement effect. Unless sufficient, expect not to enhance reinforcement effect, because of occuring bond failure between concrete and CFM. In this study, the bond strength and load-displacement response of CFM to the concrete by the direct pull-out test(the tensile-shear test method) were investigated using the experiment and the finite element method analysis with ABAQUS. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

Fluxless Plasma Soldering of Pb-free Solders on Si-wafer -Effect of Plasma Cleaning - (Si-wafer의 플럭스 리스 플라즈마 무연 솔더링 -플라즈마 클리닝의 영향-)

  • 문준권;김정모;정재필
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 2004
  • To evaluate the effect of plasma cleaning on the soldering reliability the plasma cleaning using Ar-10vol%$H_2$ gas was applied on a UBM(Under Bump Metallization). The UBM consisted of Au/ Cu/ Ni/ Al layers which were deposited on a Si-wafer with 20 nm/ 4 $\mu\textrm{m}$/ 4 $\mu\textrm{m}$/ 0.4 $\mu\textrm{m}$ thickness respectively. Sn-3.5%Ag, Sn-3.5%Ag-0.7%Cu and Sn-37%Pb solder balls sized of 500 $\mu\textrm{m}$ in diameter were used. Solder balls on the UBM were plasma reflowed under Ar-10%$H_2$ plasma (with or without plasma cleaning). They were compared with air reflowed solder balls with flux. The spreading ratios of plasma reflowed solder with plasma cleaning was 20-40% higher than that of plasma reflowed solder without plasma cleaning. The shear strength of plasma reflowed solder with plasma cleaning was about 58-65MPa. It showed 60-80% higher than that of plasma reflowed solder without plasma cleaning and 15-35% higher than that of air reflowed solder. Thus it was believed that plasma cleaning for the UBM using Ar-10vol%$H_2$ gas was considerably effective for the improvement of the strength of solder ball.

  • PDF

EFFECT OF DIFFERENT SURFACE TREATMENTS TO INCREASE BIOCOMPATIBILITY OF DENTAL IMPLANT (임플랜트 표면처리가 생체활성에 미치는 영향)

  • Lee, Ho-Jin;Song, Kwang-Yeob;Yoon, Tae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.594-605
    • /
    • 2006
  • Statement of problem: Modification of titanium implant surface has potential to ensure clinically favorable performance that several surface modification technologies have been introduced. Among the methods. anodizing method and sol-gel hydroxyapatite coating method have gained much interest due to its roughness and chemical composition of the coating layer, but more of its biocompatibility result is required. Purpose : The purpose of this study was to compare bone-implant interface shear strength of four different surface treated implants as time elapsed. Resonance frequency analysis(RFA) and removal torque measurement methods were employed to measure implant stability at one week and six week after implantation. Material and method: A total of 80 screw-shaped implant [20 machined, 20 resorbable media blasted(RBM), 20 anodized, and 20 anodized+hydroxyapatite sol-gel coated] were prepared, and one of each group was implanted in the tibia of a New Zealand white rabbit that total 20 of them were used. In order to test the implant stability and implant-tissue interface contact changing in the bone bed, each 10 rabbit were sacrificed 1 week and 6 week later while resonance frequency and removal torque were measured. One-way analysis of variance and the Tukey test were used for statistical analysis. Results : The results were as follows. 1. There was no statistically significant difference of implant stability quotients(ISQ) value in RFA between individual groups after 1 week of implantation and 6 weeks(p>0.05). But, there was statistically significant increase of ISQ value in 6 weeks group compared to 1 week group(p<0.05). 2. There was no statistically significant difference in removal torque analysis between individual groups after 1 week of implantation and 6 weeks(p>0.05). but there was statistically significant increase in all 4 groups after 6 weeks compared to 1 week later(p<0.05). 3. There was no statistically significant difference in removal torque analysis between anodized group and HA coating after anodic oxidation 6 weeks later(p>0.05), but significant difference was appeared in both groups compared to RBM group and smooth-machined group(p<0.05). Conclusions : It can be suggested that changes in surface characteristics affect bone reactions. Anodized and anodized+hydroxyapatite sol-gel coating showed significantly improved bone tissue response to implants, but further study on the effect of hydroxyapatite dissolution is needed.

Effect of Extract or Crude Enzyme Extracted from the Fruit of Paper Mulberry (Broussonetia kazinoki Siebold) on Tenderness and Palatability of Jangchorim (닥나무 열매(緖寶子)의 농축액과 조효소가 장조림의 맛과 연화에 미치는 영향)

  • 윤숙자;장명숙
    • Korean journal of food and cookery science
    • /
    • v.13 no.5
    • /
    • pp.617-622
    • /
    • 1997
  • The purpose of this study was to investigate the effect of the addition of the extract (0, 2, 4, 6, 8%) and crude enzyme (0, 0.05, 0.1, 0.5, 1%) extracted from the fruits of paper mulberry (Broussonetia kazinoki Siebold) on the tenderness and palatability of Jangchorim. Addition of up to 8% of the extract diminished the shear force by 4.8∼27%, while the addition of up to 1% of the crude enzyme begot 7.8∼34.2% decrease. Also, as the addition of the fruits of paper mulberry increased, the cooking loss was somewhat decreased, an the redness of cooked beef surface and free amino acid content in the liquid part of Jangchorim were generally increased. The contents of the mineral were in the order of Na, K, P, Ca, and Mg when crude enzyme was added. In sensory evaluation, the 4% crude extract from the fruit of paper mulberry and 0.1% addition in its crude enzyme showed the most favorable response.

  • PDF

Quality and Storage Characteristics of Mechanically Deboned Chicken Meat Added Chicken Sausage (기계발골 계육이 첨가된 계육 소시지의 품질 및 저장특성)

  • Lee, Jae-Joon;Choi, Jung-Soek;Jung, Dong-Soon;Park, Sung-Hyun;Choi, Yang-Il
    • Food Science of Animal Resources
    • /
    • v.31 no.3
    • /
    • pp.460-468
    • /
    • 2011
  • We evaluated the effect of adding mechanically deboned chicken meat (MDCM) (0, 10, 20, 30 or 50%) on quality characteristics of chicken sausage. Adding MDCM decreased the protein content of chicken sausage, but ash content increased significantly. Adding MDCM had no effect on pH and water holding capacity of sausage. Adding MDCM increased cooking loss, but did not affect the shear force value of the sausage. Adding MDCM decreased the L- (lightness) and b- (yellowness) values but increased the a- (redness) value of sausage. Adding MDCM decreased the hardness and cohesiveness values, but did not affect the springiness value of chicken sausage. Adding MDCM decreased the juiciness and hardness but increased the flavor and chewiness scores of chicken sausage. Regardless of the MDCM addition level, all chicken sausage contained low residual nitrite ion (<4 ppm). During the 10 d of storage at $4^{\circ}C$, adding MDCM did not affect total microbial count or TBA values of chicken sausage, but the VBN value of the sausage increased slightly. However, all storage characteristic values in the sausage were within the safety range. Adding MDCM (0, 10 or 20%) to chicken sausage resulted in a finely structured protein matrix under scanning electron microscopy (SEM), which indicated a good meat emulsion, but adding MDCM at more than 20% resulted in a very coarse protein matrix structure.