• Title/Summary/Keyword: shear effect

Search Result 4,334, Processing Time 0.034 seconds

Experimental Study on Shear Connector for Precast Concrete Decks

  • Chung, Chul-Hun;Shim, Chang-Su;Jeong, Un-Yong
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.61-67
    • /
    • 2001
  • For the design of shear connection for the composite precast concrete slabs. it is necessary to investigate its strength, stiffness, slip capacity and fatigue endurance. For theme purposes, push-out tests were performed with variations of the stud shank diameter and the compressive strength of the mortar. From the experimental studies, it could be observed that the deformation of the shear studs in a full-depth precast concrete slabs were greater than those in a cast-in-place slabs. The static strength of the shear connections obtained agree approximately with those evaluated from the tensile strength of the stud shear connectors owing to the effect of the bedding layer between the slabs and the beams. An empirical equation for the initial shear stiffness of a shear connection was also proposed. On the basis of the push-out tests, a full-scale composite beams with 8.0m span was designed and fatigue tests were carried out to study the behaviour of the stud shear connection and its effects on the flexural behaviour of the beam. The bonding arid friction between the concrete slab and the steel beam considerably increased the fatigue endurance of the shear connection.

  • PDF

Development of Shear Flow Calculation Program for Ship Hull Transverse Section (선체 횡단면의 전단흐름 계산 프로그램 개발)

  • Nho, In Sik;Lee, Jeong-Youl;Woo, Jeong-Jae;Oh, Young-Taek
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.188-194
    • /
    • 2016
  • Accurate estimation of shear flows in thin-walled beam section is the key issue to evaluate shear stress distribution of ship hull transverse section under the shear forces acting on hull girder. It is regarded that the method using the warping functions obtained by finite element formulation is the state of the art of this field. Recently, however, IACS took effect the new version of CSR in which direct calculation process of shear flow was suggested. In the direct calculation process, shear flow of ship hull section can be obtained by the addition of determinate and indeterminate shear flows calculated respectively. So, in this paper, the shear flow evaluation codes based on the process proposed by IACS CSR and warping function based method were developed respectively. The calculated results of shear flows for the several examples of ship sections were compared with each other and considered in detail.

Seismic performance evaluation of mid-rise shear walls: experiments and analysis

  • Parulekar, Y.M.;Reddy, G.R.;Singh, R.K.;Gopalkrishnan, N.;Ramarao, G.V.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.291-312
    • /
    • 2016
  • Seismic performance evaluation of shear wall is essential as it is the major lateral load resisting member of a structure. The ultimate load and ultimate drift of the shear wall are the two most important parameters which need to be assessed experimentally and verified analytically. This paper comprises the results of monotonic tests, quasi-static cyclic tests and shake-table tests carried out on a midrise shear wall. The shear wall considered for the study is 1:5 scaled model of the shear wall of the internal structure of a reactor building. The analytical simulation of these tests is carried out using micro and macro modeling of the shear wall. This paper mainly consists of modification in the hysteretic macro model, developed for RC structural walls by Lestuzzi and Badoux in 2003. This modification is made by considering the stiffness degradation effect observed from the tests carried out and this modified model is then used for nonlinear dynamic analysis of the shear wall. The outcome of the paper gives the variation of the capacity, the failure patterns and the performance levels of the shear walls in all three types of tests. The change in the stiffness and the damping of the wall due to increased damage and cracking when subjected to seismic excitation is also highlighted in the paper.

Shear Performance of High-Strength Reinforced Concrete Beams using Fly-Ash Artificial Lightweight Aggregate (석탄회 인공경량골재를 사용한 고강도 콘크리트 보의 전단성능)

  • Chung, Soo-Young;Yun, Hyun-Do;Park, Wan-Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.233-242
    • /
    • 2002
  • This study is to investigate experimentally the shear capacity of high-strength lightweight-aggregate reinforced concrete beams subjected to monotonic loading. Ten beams made of fly-ash artificial lightweight high-strength concrete were tested to determine their diagonal cracking and ultimate shear capacities. The variables in the test program were longitudinal reinforcement ratio; which variabled (between 0.83 and 1.66 percent), shear span-to-depth ratio (a/d=1.5, 2.5 and 3.5), and web reinforcement(0, 0.137, 0.275 and 0.554 percent). Six of the test beams had no web reinforcement and the other six had web reinforcement along the entire length of the beam. Most of beams failed brittly by distinct diagonal shear crack, and have reserved shear strength due to the lack of additional resisting effect by aggregate interlocking action after diagonal cracking. Test results indicate that the ACI Building Code predictions of Eq. (11-3) and (11-5) for lightweight concretes are unconservative for beams with tensile steel ratio of 1.66, a/d ratios greater than 2.5 without web reinforcement. Through a more rational approach to compute the contribution of concrete to the shear capacity, a postcracking shear strength in concrete is observed.

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (II) - Verification

  • You, Young-Min;Kang, Won-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.16-25
    • /
    • 2007
  • In a companion paper, a rational mechanical model to predict the entire behavior of point-loaded RC slender beams (a/d > 2.5) without shear reinforcement was developed. This paper presents the test results of 9 slender shear beams and compares them with analytical results performed by the proposed model. They are grouped by two parameters, which are shear span ratio and concrete strength. Three kinds of concrete strength the 26.5, 39.2, and 58.8 MPa were included as a major experimental parameter together with different shear span ratios ranging from 3 to 6 depending on the test series. Tests were set up as a traditional 3 point bending test. Various measurements were taken to monitor abrupt shear failure. Test results were not only compared with analytical results from the proposed model, but also other formulas, to consider the various aspects of shear failure such as kinematical conditions or shear capacity. Finally, a review of the proposed model is presented with respect to the shear transfer mechanisms and the effect of test parameters. Results show that several assumptions and proposals adopted in the proposed model are rational and reasonable.

Retrofitting of shear damaged RC beams using CFRP strips

  • Altin, Sinan;Anil, Ozgur;Toptas, Tolga;Kara, M. Emin
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.207-223
    • /
    • 2011
  • The results of an experimental investigation are presented in this paper for retrofitting of shear damaged reinforced concrete beams by using U shaped CFRP strips. The experimental program is consisted of seven shear deficient T cross sectioned 1/2 scale simply supported beam specimens. One beam was used as reference specimen, and the remaining six specimens were tested in two stages. At the first stage, specimens were shear damaged severely, and then were retrofitted by using CFRP strips with or without fan type anchorages. Finally, retrofitted beams were tested up to failure. Three different CFRP strip spacing were used such as 125 mm, 150 mm, and 200 mm. The effect of anchorages on shear strength and behavior of the retrofitted specimens is investigated. CFRP strips without anchorages improved the shear strength, but no flexural failure mode was observed. Specimens showed brittle shear failure due to peeling of CFRP strip from RC beam surface. Shear damaged specimens retrofitted with anchoraged CFRP strips showed improved shear strength and ductile flexural failure. Maximum strains at anchoraged strips were approximately 68% larger than that of strips without anchorages.

Seismic performance of moment resisting steel frames retrofitted with coupled steel plate shear walls with different link beams

  • Amir Masoumi Verki;Adolfo Preciado;Pegah Amiri Motlagh
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.591-609
    • /
    • 2023
  • In some buildings, the lateral structural response of steel framed buildings depends on the shear walls and it is very important to study the behavior of these elements under near-field seismic loads. The link beam in the opening of the shear wall between two wall plates is investigated numerically in terms of behavior and effects on frames. Based on the length of the beam and its bending and shear behavior, three types of models are constructed and analyzed, and the behavior of the frames is also compared. The results show that by reducing the length of the link beam, the base shear forces reduce about 20%. The changes in the length of the link beam have different effects on the degree of coupling. Increasing the length of the link beam increases the base shear about 15%. Also, it has both, a positive and a negative effect on the degree of coupling. The increasing strength of the coupling steel shear wall is linearly related to the yield stress of the beam materials, length, and flexural stiffness of the beam. The use of a shorter link beam will increase the additional strength and consequently improving the behavior of the coupling steel shear wall by reducing the stresses in this element. The link beam with large moment of inertia will also increase about 25% the additional strength and as a result the coefficient of behavior of the shear wall.

Experimental Study on the Shearing and Crushing Characteristics of Subaqueous Gravels in Gravel Bed River (수중 자갈의 전단 및 파쇄 특성에 관한 실험적 연구)

  • Kim, So-Ra;Jeong, Sueng-Won;Lee, Gwang-Soo;Yoo, Dong-Geun
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.164-174
    • /
    • 2021
  • The study examines the shearing and crushing characteristics of land-derived subaqueous granular materials in a gravel-bed river. A series of large-sized ring shear tests were performed to examine the effect of shear time and shear velocity on the shear stress characteristics of aquarium gravels with a 6-mm mean grain size. Three different shear velocities (i.e., 0.01, 0.1, and 1 mm/sec) were applied to measure the shear stress under the drained (long-term shearing) and undrained (short-term shearing) conditions. Different initial shear velocities, i.e., 0.01→0.1→1 mm/sec and 0.1→0.01→1 mm/sec, were considered in this study. The test results show that the grain crushing effect is significant regardless of drainage conditions. The shear stress of coarse-grained materials is influenced by initial shear velocities, regardless of the drainage conditions. In particular, particle breakage increases as grain size increases. The shearing time and initial shear velocity are the primary influencing factors determining the shear stress of gravels. The granular materials may be broken easily into particles through frictional resistance, such as abrasion, interlocking and fracture due to the particle-particle interaction, resulting in the high mobility of granular materials in a subaqueous environment.

Shear Strengthening Effect of Pre-loaded RC Beams Strengthened by CFS (재하상태를 고려한 탄소섬유 보강공법의 전단 보강 효과)

  • 김주연;신영수;홍건호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.709-712
    • /
    • 1999
  • This paper was aimed to investigate the shear strengthening effect of the pre-loaded reinforced concrete beams strengthened by carbon fiber sheet (CFS). Main tet parameters was the magnitude of pre-loading at the time of the retrofit and the strengthening method of carbon fiber sheet. A series of nine specimens was tested to evaluate the corresponding effect of each parameters such as maximum load capacity, load-deflection relationship, and failure mode. The results of this study showed that the failure mode is bonding failure between the concrete and the CFS before the tensile failure strain of the CFS is reached.

  • PDF

Micro-scale dependent static stress and strain analyses of thickness-stretching micro plate in sport application

  • Mingjun Xia
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.349-358
    • /
    • 2023
  • Aim of this work is investigating effect of thickness-stretching formulation on the quasi three-dimensional analysis of micro plate based on a thickness-stretched and shear deformable model through principle of virtual work and micro-scale dependent constitutive relations. Governing differential equations are derived in terms of five unknown functions and the analytical solution is derived using Navier's technique. To explore effect of thickness stretching model on the static results, a comparison between the results with and without thickness stretching effect is presented.