• Title/Summary/Keyword: shear deficient

Search Result 38, Processing Time 0.019 seconds

Modeling of nonlinear response of R/C shear deficient t-beam subjected to cyclic loading

  • Hawileh, R.A.;Abdalla, J.A.;Tanarslan, M.H.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.419-434
    • /
    • 2012
  • This paper presents a finite element (FE) model for predicting the nonlinear response and behavior of a reinforced concrete T-beam deficient in shear under cyclic loading. Cracking loads, failure loads, response hysteresis envelopes and crack patterns were used as bench mark for comparison between experimental and FE results. A parametric study was carried out to predict the optimum combination of the open and close crack shear transfer coefficients (${\beta}_t$ and ${\beta}_c$) of the constitutive material model for concrete. It is concluded that when both shear transfer coefficients are equal to 0.2 the FE results gave the best correlation with the experimental results. The results were also verified on a rectangular shear deficient beam (R-beam) tested under cyclic loading and it is concluded that the variation of section geometry has no effect on the optimum choice of the values of shear transfer coefficients of 0.2. In addition, a parametric study based on the variation of concrete compressive strength, was carried out on the T-beam and it is observed that the variation of concrete compressive strength has little effect on the deflection. Further conclusions and observations were also drawn.

Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips

  • Anil, Ozgur;Yilmaz, Tolga
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.417-439
    • /
    • 2015
  • Many methods are developed for strengthening of reinforced concrete structural members against the effects of shear. One of the commonly used methods in recent years is turned out to be bonding of fiber reinforced polymers (FRP). Impact loading is one of the important external effects on the reinforced concrete structural members during service period among the others. The determination of magnitude, the excitation time, deformations and stress due to impact loadings are complicated and rarely known. In recent year impact behavior of reinforced concrete members have been researched with experimental studies by using drop-weight method and numerical simulations are done by using finite element method. However the studies on the strengthening of structural members against impact loading are very seldom in the literature. For this reason, in this study impact behavior of shear deficient reinforced concrete beams that are strengthened with carbon fiber reinforced polymers (CFRP) strips are investigated experimentally. Compressive strength of concrete, CFRP strips spacing and impact velocities are taken as the variables in this experimental study. The acceleration due to impact loading is measured from the specimens, while velocities and displacements are calculated from these measured accelerations. RC beams are modeled with ANSYS software. Experimental result and simulations result are compared. Experimental result showed that impact behaviors of shear deficient RC beams are positively affected from the strengthening with CFRP strip. The decrease in the spacing of CFRP strips reduced the acceleration, velocity and displacement values measured from the test specimens.

Experimental Assessment of Numerical Models for Reinforced Concrete Shear Walls with Deficient Details (결함 상세를 포함하는 철근콘크리트 전단벽의 수치 모델에 관한 실험적 평가)

  • Jeon, Seong-Ha;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.211-222
    • /
    • 2016
  • Reinforced concrete shear walls with deficient reinforcement details are tested under cyclic loading. The deficiency of reinforcement details includes insufficient splice length in U-stirrups at the ends of horizontal reinforcement and boundary column dowel bars found in existing low- to mid-rise Korean buildings designed non-seismically. Three test specimens have rectangular, babel and flanged sections, respectively. Flexure- and shear-controlled models for reinforced concrete shear walls specified in ASCE/SEI 41-13 are compared with the flexural and shear components of force-displacement relation extracted separately from the top displacement of the specimen based on the displacement data measured at diverse locations. Modification of the shear wall models in ASCE/SEI 41-13 is proposed in order to account for the effect of bar slip, cracking loads in flexure and shear. The proposed modification shows better approximation of the test results compared to the original models.

Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams

  • Gemi, Lokman;Alsdudi, Mohammed;Aksoylu, Ceyhun;Yazman, Sakir;Ozkilic, Yasin Onuralp;Arslan, Musa Hakan
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.735-757
    • /
    • 2022
  • The behavior of shear deficient under-balanced reinforced concrete beams with rectangular cross-sections, which were externally strengthened with CFRP composite along shear spans, was experimentally investigated under vertical load. One of the specimens represents a reference beam without CFRP strengthening and the other specimens have different width/strip spacing ratios (wf/sf). The optimum strip in terms of wf/sf, which will bring the beam behavior to the ideal level in terms of strength and ductility, was determined according to the regulations. When the wf/sf ratio exceeds 0.55, the behavior of the beam shifted from shear failure to bending failure. However, it has been observed that the wf/sf ratio should be increased up to 0.82 in order for the beam to reach sufficient shear reserve value according to the codes. It is also observed that the direction and weight of the CFRP composite are one of the most critical factors and 240 gr/m2 CFRP strips experienced sudden ruptures in the shear span after the cracking of the concrete. It is considered as a deficiency that the empirical shear capacity formulas given for the beams reinforced with CFRP in the regulations do not take into account both direction and weight of CFRP composites.

Seismic shear strengthening of R/C beams and columns with expanded steel meshes

  • Morshed, Reza;Kazemi, Mohammad Taghi
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.333-350
    • /
    • 2005
  • This paper presents results of an experimental study to evaluate a new retrofit technique for strengthening shear deficient short concrete beams and columns. In this technique a mortar jacket reinforced with expanded steel meshes is used for retrofitting. Twelve short reinforced concrete specimens, including eight retrofitted ones, were tested. Six specimens were tested under a constant compressive axial force of 15% of column axial load capacity based on original concrete gross section, $A_g$, and the concrete compressive strength, ${f_c}^{\prime}$. Main variables were the spacing of ties in original specimens and the volume fraction of expanded metal in jackets. Original specimens failed before reaching their nominal calculated flexural strength, $M_n$, and had very poor ductility. Strengthened specimens reached their nominal flexural strength and had a ductility capacity factor of up to 8 for the beams and up to 5.5 for the columns. Based on the test results, it can be concluded that expanded steel meshes can be used effectively to strengthen shear deficient concrete members.

The Use of Advanced Optical Measurement Methods for the Mechanical Analysis of Shear Deficient Prestressed Concrete Members

  • Wilder, K. De;Roeck, G. De;Vandewalle, L.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.189-203
    • /
    • 2016
  • This paper investigates on the use of advanced optical measurement methods, i.e. 3D coordinate measurement machines (3D CMM) and stereo-vision digital image correlation (3D DIC), for the mechanical analysis of shear deficient prestressed concrete members. Firstly, the experimental program is elaborated. Secondly, the working principle, experimental setup and corresponding accuracy and precision of the considered optical measurement techniques are reported. A novel way to apply synthesised strain sensor patterns for DIC is introduced. Thirdly, the experimental results are reported and an analysis is made of the structural behaviour based on the gathered experimental data. Both techniques yielded useful and complete data in comparison to traditional mechanical measurement techniques and allowed for the assessment of the mechanical behaviour of the reported test specimens. The identified structural behaviour presented in this paper can be used to optimize design procedure for shear-critical structural concrete members.

Use of waste steel fibers from CNC scraps in shear-deficient reinforced concrete beams

  • Ilker Kalkan;Yasin Onuralp Ozkilic;Ceyhun Aksoylu;Md Azree Othuman Mydin;Carlos Humberto Martins;Ibrahim Y. Hakeem;Ercan Isik;Musa Hakan Arslan
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.245-255
    • /
    • 2023
  • The present paper summarizes the results of an experimental program on the influence of using waste lathe scraps in the concrete mixture on the shear behavior of RC beams with different amounts of shear reinforcement. Three different volumetric ratios (1, 2 and %3) for the scraps and three different stirrup spacings (160, 200 and 270 mm) were adopted in the tests. The shear span-to-depth ratios of the beams were 2.67 and the stirrup spacing exceeded the maximum spacing limit in the building codes to unfold the contribution of lathe scraps to the shear resistances of shear-deficient beams, subject to shear-dominated failure (shear-tension). The experiments depicted that the lathe scraps have a pronounced contribution to the shear strength and load-deflection behavior of RC beams with widely-spaced stirrups. Namely, with the addition of 1%, 2% and 3% waste lathe scraps, the load-bearing capacity escalated by 9.1%, 21.8% and 32.8%, respectively, compared to the reference beam. On the other hand, the contribution of the lathe scraps to the load capacity decreases with decreasing stirrup spacing, since the closely-spaced stirrups bear the shear stresses and render the contribution of the scraps to shear resistance insignificant. The load capacity, deformation ductility index (DDI) and modulus of toughness (MOT) values of the beams were shown to increase with the volumetric fraction of scraps if the stirrups are spaced at about two times the beam depth. For the specimens with a stirrup spacing of about the beam depth, the scraps were found to have no considerable contribution to the load capacity and the deformation capacity beyond the ultimate load. In other words, for lathe scrap contents of 1-3%, the DDI values increased by 5-23% and the MOT values by 63.5-165% with respect to the reference beam with a stirrup spacing of 270 mm. The influence of the lathe scraps to the DDI and MOT values were rather limited and even sometimes negative for the stirrup spacing values of 160 and 200 mm.

Shear strengthening of deficient concrete beams with marine grade aluminium alloy plates

  • Abu-Obeidah, Adi S.;Abdalla, Jamal A.;Hawileh, Rami A.
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.249-262
    • /
    • 2019
  • In this study, high strength aluminum alloys (AA) plates are proposed as a new construction material for strengthening reinforced concrete (RC) beams. The purpose of this investigation is to evaluate AA plate's suitability as externally bonded reinforcing (EBR) materials for retrofitting shear deficient beams. A total of twenty RC beams designed to fail in shear were strengthened with different spacing and orientations. The specimens were loaded with four-points loading till failure. The considered outcome parameters included load carrying capacity, deflection, strain in plates, and failure modes. The results of all tested beams showed an increase up to 37% in the load carrying capacity and also an increase in deflection compared to the control un-strengthened beams. This demonstrated the potential of adopting AA plates as EBR material. Finally, the shear contribution from the AA plates was predicted using the models available in the ACI440-08, TR55 and FIB14 design code for fiber reinforced polymer (FRP) plates. The predicted results were compared to experimental testing data with the ratio of the experimentally measured ultimate load to predicted load, range on the average, between 93% and 97%.

Force-based seismic design of steel haunch retrofit for RC frames

  • Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.133-148
    • /
    • 2021
  • The paper presents a simplified force-based seismic design procedure for the preliminary design of steel haunch retrofitting for the seismic upgrade of deficient RC frames. The procedure involved constructing a site-specific seismic design spectrum for the site, which is transformed into seismic base shear coefficient demand, using an applicable response modification factor, that defines base shear force for seismic analysis of the structure. Recent experimental campaign; involving shake table testing of ten (10), and quasi-static cyclic testing of two (02), 1:3 reduced scale RC frame models, carried out for the seismic performance assessment of both deficient and retrofitted structures has provided the basis to calculate retrofit-specific response modification factor Rretrofitted. The haunch retrofitting technique enhanced the structural stiffness, strength, and ductility, hence, increased the structural response modification factor, which is mainly dependent on the applied retrofit scheme. An additional retrofit effectiveness factor (ΩR) is proposed for the deficient structure's response modification factor Rdeficient, representing the retrofit effectiveness (ΩR=Rretrofitted /Rdeficient), to calculate components' moment and shear demands for the retrofitted structure. The experimental campaign revealed that regardless of the deficient structures' characteristics, the ΩR factor remains fairly the unchanged, which is encouraging to generalize the design procedure. Haunch configuration is finalized that avoid brittle hinging of beam-column joints and ensure ductile beam yielding. Example case study for the seismic retrofit designs of RC frames are presented, which were validated through equivalent lateral load analysis using elastic model and response history analysis of finite-element based inelastic model, showing reasonable performance of the proposed design procedure. The proposed design has the advantage to provide a seismic zone-specific design solution, and also, to suggest if any additional measure is required to enhance the strength/deformability of beams and columns.

Finite element analysis of shear-deficient RC beams strengthened with CFRP strips/sheets

  • Lee, H.K.;Ha, S.K.;Afzal, M.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.247-261
    • /
    • 2008
  • Performance of shear-deficient reinforced concrete (RC) beams strengthened with carbon fiber-reinforced polymer (CFRP) strips/sheets is analyzed through numerical simulations on four-point bending tests. The numerical simulations are carried out using the finite element (FE) program ABAQUS. A micromechanics-based constitutive model (Liang et al. 2006) is implemented into the FE program ABAQUS to model CFRP strips/sheets. The predicted results are compared with experiment data (Khalifa and Nanni 2002) to assess the accuracy of the proposed FE analysis approach. A series of numerical tests are conducted to investigate the influence of stirrup lay-ups on the shear strengthening performance of the CFRP strips/sheets, to illustrate the influence of the damage parameters on the microcrack density evolution in concrete, and to investigate the shear and flexural strengthening performance of CFRP strips/ sheets. It has been shown that the proposed FE analysis approach is suitable for the performance prediction of RC beams strengthened with CFRP strips/sheets.