• Title/Summary/Keyword: shear construction

Search Result 1,766, Processing Time 0.034 seconds

Proposed dynamic p-y curves on a single pile considering shear wave velocity of soil

  • Song, Sumin;Lim, Hyunsung;Park, Seongyong;Jeong, Sangseom
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.353-361
    • /
    • 2022
  • The dynamic behavior of a single pile was investigated by using analytical and numerical studies. The focus of this study was to develop the dynamic p-y curve of a pile for pseudo-static analysis considering the shear wave velocity of the soil by using three-dimensional numerical analyses. Numerical analyses were conducted for a single pile in dry sand under changing conditions such as the shear wave velocity of the soil and the acceleration amplitudes. The proposed dynamic p-y curve is a shape of hyperbolic function that was developed to take into account the influence of the shear wave velocity of soil. The applicability of pseudo-static analysis using the proposed dynamic p-y curve shows good agreement with the general trends observed by dynamic analysis. Therefore, the proposed dynamic p-y curve represents practical improvements for the seismic design of piles.

Evaluation of the change in Geotechnical properties due to the Construction of Civil engineering Structure using HWAW Method (HWAW방법을 이용한 토목구조물 건설에 따른 하부 지반 물성 변화 평가)

  • Park, Hyung-Choon;Noh, Hee-Kwan;Park, Byeong-Cheol;Kim, Min-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.182-187
    • /
    • 2010
  • In the various fields of Civil Engineering, shear modulus is very important input parameters to design many constructions and to analyze ground behaviors. In general, a shear wave velocity profile is decided by various experiments before constructing a structure and, analysis and design are carried out by using decided shear wave velocity profile of the site. However, if civil structures are started to construct, the shear wave velocity will be increased more than before constructions because of confining pressure increase by the load of structure. The evaluation of the change in shear wave velocity profile is used very importantly when maintaining, managing, reinforcing and regenerating existing structures. In this study, a non-destructively geotechnical investigation method by using the HWAW method is applied to an evaluation of change in properties of the site according to construction. Generally, the space for experiments is narrow when underground of existing or on-going structures is evaluate, so a prompt non-destructive experiment is required. This prompt non-destructive experiment would be performed by various in-situ seismic methods. However, most of in-situ seismic methods need more space for experiments, so it is difficult to be applied. The HWAW method using the Harmonic wavelet transforms, which is based on time-frequency analysis, determines shear wave velocity profile. It consists of a source as well as short receiver spacing that is 1~3m, and is able to determine a shear wave velocity profile from surface to deep depth by one test on a space. As the HWAW method uses only the signal portion of the maximum local signal/noise ratio to determine a profile, it provides reliability shear modulus profile such as under construction or noisy situation by minimizing effects of noise from diverse vibration on a construction site or urban area. To estimate the applicability of the proposed method, field tests were performed in the change of geotechnical properties according to constructing a minimized modeling bent. Through this study, the change of geotechnical properties of the site was effectively evaluated according to construction of a structure.

  • PDF

A Simple Modification of the First-order Shear Deformation Theory for the Analysis of Composite Laminated Structures (복합적층구조해석을 위한 1차전단변형이론의 간단한 수정방안)

  • Chun, Kyoung-Sik;Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.475-481
    • /
    • 2011
  • In this study, a simplified method of improving not only transverse shear stress but also shear strain based on the first-order shear deformation theory was developed. Unlike many established methods, such as the higher-order shear deformation and layerwise theories, this method can easily apply to finite elements as only $C^0$ continuity is necessary and the formulation of equations is very simple. The basic concept in this method, however, must be corrected:the distribution of the transverse shear stresses and shear strains through the thickness from the formulation based on the higher-order shear deformation theory. Therefore, the shear correction factors are no longer required, based on the first-order shear deformation theory. Numerical analyses were conducted to verify the validity of the proposed formulations. The solutions based on the simplified method were in very good agreement with the results considering the higher-order shear deformation theory.

Lateral Resistance of Reinforced Light-Frame Wood Shear Walls

  • Hyung Woo LEE;Sang Sik JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.58-66
    • /
    • 2023
  • In light-frame timber construction, the shear wall is one of the most important components that provide resistance to lateral loads such as earthquakes or winds. According to KDS (Korea Design Standard) 42 50 10, shear walls are to be constructed using wood-based structural sheathing, with studs connected by 8d nails spaced 150 mm along the edge and 300 mm in the field. Even though small-scale residential timber building can be designed to exhibit seismic resistance using light-frame timber shear walls in accordance with KDS 42 50 10, only the abovementioned standard type of timber shear wall is available. Therefore, more types of timber shear walls composed of various materials should be tested to measure their seismic resistance, and the results should be incorporated into the future revision of KDS 42 50 10. In this study, the seismic resistance of shear walls composed of structural timber studs and wood-based structural sheathing with reinforced nailing is tested to evaluate the effects of the reinforcement. For the nailing reinforcement, shear wall specimens are constructed by applying nail spacings of 75-150 mm and 50-100 mm. For the shear wall specimens with one sheathing and reinforced nailing, the shear strengths are 1.7-2.0 times higher than that of the standard shear wall (nail spacing of 150-300 mm). The shear strength of the shear walls with sheathing on both sides is 2.0-2.7 times higher than that of the standard shear wall.

Shear Strength of Nailed Connection of Domestic Plywood as a Substitute for OSB (OSB 대체용 국내산 합판의 못 접합부 전단내력 성능)

  • Suh, Jin-Suk;Hwang, Sung-Wook;Hwang, Kweon-Hwan;Jeong, Gi-Young;Joung, Ha-Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.287-293
    • /
    • 2012
  • This study was carried out in order to compare nail shear strength between domestic plywood and imported OSB for structural sheathing members as infill wall of wooden construction. The differences of nail shear strength between parallel-to-grain direction and perpendicular-to-grain direction of sheathing material to frame material were distinct at the plywood composition. The shear strengths of plywood and OSB with nail met current design values. The plywood of P-4 type, which uses MLH at surface layer and constructs 7 ply, showed greater than OSB regardless of grain direction of sheathing material to frame material. When the plywood as sheathing material to frame material was used, it was found out that the overall construction of perpendicular-to-grain direction of plywood had greater nail shear strengths than the construction of parallel-to-grain.

Nail Shear Performance of Structural Members with OSB (오에스비에 대한 각종 부재의 못전단성능)

  • Hwang, Kweonhwan;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.66-76
    • /
    • 2008
  • Recently, demands for the structural uses with domestic Japanese larch and SPF(spruce-pine-fir) lumber from North America have been increased. Shear properties of nailed joints that are the most simple and optimum fastening method in wooden constructions, especially in light frame construction. For the nailed joints, in North America and Japan, a number of basic and practical studies have been performed. The shear behaviors for the double nailed joint with variations of member and its direction, were examined. Shear properties of the shear specimens with SPF stud showed more remarkable variation than larch glulam and larch stud. Furthermore, the relationships between slip modulus and strength are not coincided in every case.

Economic Analysis of Concrete Panel Replacement of PSC Bridge with Embedded Demountable Shear Connector (매립형 분리식 전단연결재를 적용한 PSC교 콘크리트 바닥판 교체공사의 경제성 분석)

  • Soon-Hwan, Lee;Jong-Eon, Kim;Jae-Gyu, Kim;Se-Hyun, Park;Dae-Sung, Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.376-385
    • /
    • 2022
  • The embedded demountable shear connector was developed in preparation for replacement works due to deterioration and damage to the bridge panel of the PSC girder bridge which is a road infrastructure directly related to the safety and convenience of the people. The demountable shear connector minimizes crushing works in the demolition process of the panel, and it is easy to re-construct the shear connector for replacement work. The economic feasibility of the PSC girder bridge using the embedded demountable shear connector compared to the existing construction method was analyzed from the perspective of road users (people) by calculating and comparing the cost of road users caused by traffic blocking during each construction method.

Evaluation of Shear Load Carrying Capacity of Lateral Supporting Concrete Block for Sliding Slab Track Considering Construction Joint (타설 경계면을 고려한 슬라이딩 궤도 횡방향 지지 콘크리트 블록의 전단 내하력 평가)

  • Lee, Seong-Cheol;Jang, Seung Yup;Lee, Kyoung-Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.55-61
    • /
    • 2017
  • Recently several researches have been conducted to develop sliding track system in which friction between concrete track and bridge slab has been reduced. This paper investigated shear load carrying capacity of lateral supporting concrete block which should be implemented to resist lateral load due to train in sliding track system. In order to evaluate shear load carrying capacity of lateral supporting concrete block, analytical model has been developed considering concrete friction and rebar dowel action along construction joint. The proposed model predicted test results on the shear load carrying capacity from literature conservatively by 13~23% because effect of aggregate interlock along crack surface was neglected. Since construction joint status is ambiguous on construction site, it can be concluded that the proposed model can be used for reasonable design of lateral supporting concrete block. Based on the proposed model, design proposal for lateral supporting concrete block has been established.

Experimental Study of Reinforced High-Strength Concrete Beams without Stirrups Considering Shear Behaviour (전단보강근이 없는 고강도 콘크리트 깊은 보의 전단특성 실험연구)

  • Yang, Seong-Hwan;Lee, Dong-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.336-342
    • /
    • 2014
  • Shear strengths of reinforced high strength concrete beams without web reinforcement are studied with experimental analysis of 10 specimen with 2.4 shear span-to-depth ratio (a/d) beams for 4 stages of concrete compressive stength over 60MPa comparing ultimate loads and shear stresses of ACI363R and KCI code equations. Expecially, concrete compressive strengths used in shear design were essentially limited to 10,000 psi (69MPa) by ACI363R and KCI Code. The modified Code equation's shear stresses of the specimen without the limit are compared with test results. The comparison between the modified exist Code equations results and test results are expected to show an available scope to apply in construction field and to give considerations of design and contraction.

Effect of high-strength concrete on shear behavior of dry joints in precast concrete segmental bridges

  • Jiang, Haibo;Chen, Ying;Liu, Airong;Wang, Tianlong;Fang, Zhuangcheng
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1019-1038
    • /
    • 2016
  • The use of high-strength concrete (HSC) in precast concrete segmental bridges (PCSBs) can minimize the superstructure geometry and reduce beam weight, which can accelerate the construction speed. Dry joints between the segments in PCSBs introduce discontinuity and require special attention in design and construction. Cracks in dry joints initiate more easily than those in epoxy joints in construction period or in service. Due to the higher rupture strength of HSC, the higher cracking resistance can be achieved. In this study, shear behavior of dry joints in PCSBs was investigated by experiments, especially focusing on cracking resistance and shear strength of HSC dry joints. It can be concluded that the use of HSC can improve the cracking resistance, shear strength, and ductility of monolithic, single-keyed and three-keyed specimens. The experimental results obtained from tests were compared with the AASHTO 2003 design provisions. The AASHTO 2003 provision underestimates the shear capacity of single-keyed dry joint C50 and C70 HSC specimens, underestimates the shear strength of three-keyed dry joint C70 HSC specimens, and overestimates the shear capacity of three-keyed dry joint C50 HSC specimens.