• Title/Summary/Keyword: shear construction

Search Result 1,766, Processing Time 0.029 seconds

Plasticity Model for Directionality of Concrete Crack Damages (콘크리트 균열 손상의 방향성을 고려한 다중파괴기준 소성 모델)

  • Kim, Jae-Yo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.655-664
    • /
    • 2007
  • The inherent characteristic of concrete tensile cracks, directional nonlocal crack damage, causes so-called rotating tensile crack damage and softening of compressive strength. In the present study, a plasticity model was developed to describe the behavior of reinforced concrete planar members In tension-compression. To describe the effect of directional nonlocal crack damage, the concept of microplane model was combined with the plasticity model. Unlike existing models, in the proposed model, softening of compressive strength as well as the tensile crack damage were defined by the directional nonlocal crack damage. Once a tensile cracking occurs, the microplanes of concrete are affected by the nonlocal crack damage. In the microplanes, microscopic tension and compression failure surfaces are calculated. By integrating the microscopic failure surfaces, the macroscopic failure surface is calculated. The proposed model was implemented to finite element analysis, and it was verified by comparisons with the results of existing shear panel tests.

Stability Analysis of the Spillway Tunnel Located on the Granite Region Including Fault Fractured Zone (단층파쇄대를 포함한 화강암지역의 여수로 터널 안정성 분석)

  • Han, Kong-Chang;Ryu, Dong-Woo;Kim, Sun-Ki;Bae, Ki-Chung
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.58-68
    • /
    • 2008
  • The construction of an emergency spillway of Imha Dam is being in progress on the granite region including fault fractured zone. Considering that this tunnel is being excavated in three paralled rows, the pillar width between each tunnel and the face distance between each tunnel face were evaluated. The Influence of the fault fractured zone for the tunnel stability was investigated by numerical modelling in 3D. Various geophysical investigations and rock engineering field tests were carried out for these purposes. It was suitable that the second tunnel would be excavated in advance, maintaining the face distance between each tunnel face of minimum 25 m. The results of numerical modelling showed that the roof displacement and the convergence of the second tunnel were insignificant, and the maximum bending compressive stress, the maximum shear stress of shotcrete and the maximum axial force of rockbolt were also insignificant. Therefore, it was estimated that the stability of the spillway tunnel was ensured.

Analysis of Influential Factors on Ploughing Failure of Footwall Slope (Footwall 비탈면의 ploughing 파괴에 미치는 영향인자 분석)

  • Moon, Joon-Shik;Park, Woo-Jeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.659-665
    • /
    • 2016
  • The limit equilibrium method (LEM) is commonly used for slope design and stability analysis because it is easy to simulate slope and requires short calculating time. However, LEM cannot adequately simulate ploughing failure in a footwall slope with a joint set dipping parallel with slope, e.g. bedding joint set. This study performed parametric study to analyze the influence factors on ploughing failure using UDEC which is a commercial two-dimensional DEM (Distinct Element Method)-based numerical program. The influence of joint structure and properties on stability of a footwall slope against ploughing failure was investigated, and the factor of safety was estimated using the shear strength reduction method. It was found that the stability of footwall slope against ploughing failure strongly relies on dip angle of conjugate joint, and the critical bedding joint spacing and the critical length of slab triggering ploughing failure are also affected by dip angle of conjugate joint. The results obtained from this study can be used for effective slope design and construction including reinforcement.

Relationship between Electrical Resistivity and Hydraulic Resistance Capacity measured by Rotating Cylinder Test (회전식 수리저항성능 실험기를 이용한 지반의 수리저항특성과 전기비저항 특성의 상관관계)

  • Kim, Young Sang;Jeong, Shin Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Recently, constructions of coastal structure including wind turbine structure have increased at southwest shore of Korea. There is a big difference of tide which rage from 3.0 m to 8.0 m at south and wet shore of Korea, respectively. In such ocean circumstance, large scour may occur due to multi-directional tidal current and transverse stress of the wind. therefore scour surrounding wind turbine structure can make system unsafe due to unexpected system vibration. In this study, hydraulic resistance capacity, i.e., critical velocity and critical shear stress, was evaluated by RCT. Uni-directional and bi-directional hydraulic resistance capacities of the samples which were consolidated by different preconsolidation pressures were correlated with soil resistivities of same samples. According to the correlation, it is possible to estimate hydraulic resistance capacity from electrical resistivity of soil. Through the updating the correlation for various soil types, it is expected that the hydraulic resistance capacity of whole construction site will be simply determined from the electrical resistivity.

Soil arching analysis in embankments on soft clays reinforced by stone columns

  • Fattah, Mohammed Y.;Zabar, Bushra S.;Hassan, Hanan A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.507-534
    • /
    • 2015
  • The present work investigates the behavior of the embankment models resting on soft soil reinforced with ordinary and stone columns encased with geogrid. Model tests were performed with different spacing distances between stone columns and two lengths to diameter ratios (L/d) of the stone columns, in addition to different embankment heights. A total number of 42 model tests were carried out on a soil with undrianed shear strength $${\sim_\sim}10kPa$$. The models consist of stone columns embankment at s/d equal to 2.5, 3 and 4 with L/d ratio equal 5 and 8. Three embankment heights; 200 mm, 250 mm and 300 mm were tested for both tests of ordinary (OSC) and geogrid encased stone columns (ESC). Three earth pressure cells were used to measure directly the vertical effective stress on column at the top of the middle stone column under the center line of embankment and on the edge stone column for all models while the third cell was placed at the base of embankment between two columns to measure the vertical effective stress in soft soil directly. The performance of stone columns embankments relies upon the ability of the granular embankment material to arch over the 'gaps' between the stone columns spacing. The results showed that the ratio of the embankment height to the clear spacing between columns (h/s-d) is a key parameter. It is found that (h/s-d)<1.2 and 1.4 for OSC and ESC, respectively; (h is the embankment height, s is the spacing between columns and d is the diameter of stone columns), no effect of arching is pronounced, the settlement at the surface of the embankment is very large, and the stress acting on the subsoil is virtually unmodified from the nominal overburden stress. When $(h/s-d){\geq}2.2$ for OSC and ESC respectively, full arching will occur and minimum stress on subsoil between stone columns will act, so the range of critical embankment height will be 1.2 (h/sd) to 2.2 (h/s-d) for both OSC and ESC models.

A study on the characteristics of multi load transfer ground anchor system (다중정착 지반앵커의 하중전달 특성에 관한 연구)

  • Kim, Ji-Ho;Jeong, Hyeon-Sic;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.25-50
    • /
    • 2014
  • In order to identify a load transfer mechanism of ground anchors, the behavior of multi load transfer ground anchor systems was investigated and compared with those of compression type anchors and tension type anchors. Large scale model tests were performed and stress-strain relationships were obtained. The load transfer mechanism of ground anchors was also investigated in the field tests. Finally, numerical analyses to predict the load-displacement relationships of anchors were conducted. It is concluded that the load transfer characteristics of MLT anchors are mechanically much more superior in the pull-out resistance effect than those of existing compression and tension type anchors. From the results of research work, we could suggest that the max pull-out capacity of anchor capacity to each the soil condition. Also, the MLT anchors can be used to achieve both structural enhancement and economic construction in earth retaining or supporting structures.

A Study on the Stability of Asymmetrical Twin Tunnels in Alternating Rock Layers Using Scaled Model Tests (호층암반내 비대칭 쌍굴터널의 안정성에 관한 모형실험 연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.22-31
    • /
    • 2012
  • In this study, scaled model tests were performed to investigate the stability of an asymmetrical twin tunnels constructed in rock mass comprising alternating layers of sandstone and shale. Each of tunnels had a differently shaped section, where the one was already constructed tunnel including lining structure but the other was planned to be under construction. Four types of test models which had respectively different pillar widths and loading conditions were experimented, where both crack initiating pressures and deformation behaviors around tunnels were investigated. The cracks of pillar mainly began to appear at the interfaces of alternating layers, following additional shear displacement between layers was confirmed as one of the most important factors of pillar failure in case of the model of pillar width 0.5D. The models with shallower pillar widths proved to be unstable because of lower crack initiating pressures and more tunnel convergences than the models with thicker pillar widths. The failure and deformation behaviors of tunnels were also dependent on the loading conditions, where the model of coefficient of lateral pressure 1.0 was more stable than the other model. Futhermore, the results of FLAC analysis were qualitatively coincident with the experimental results.

The study for calculating the geometric average height of Deacon equation suitable to the domestic wind correction methodology. (국내풍속보정에 적합한 Deacon 방정식의 기하평균높이 산정방법에 대한 연구)

  • Cheang, Eui-Heang;Moon, Chae-Joo;Jeong, Moon-Seon;Jo, Kyu-Pan;Park, Gui-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.9-14
    • /
    • 2010
  • The main cause of global warming is carbon dioxide generated from the use of fossil fuels, and active research on the reduction of carbon is in progress to slow down the increasing global warming. Wind turbines generate electricity from kinetic energy of wind and are considered as representative for an energy source that helps to reduce carbon emission. Since the kinetic energy of wind is proportional to the cube of the wind speed, the intensity of wind affects wind farm construction validity the most. Therefore, to organize a wind farm, validity analysis should be conducted first through measurement of the wind resources. To facilitate the approval and permission and reduce installation cost, measuring sensors should be installed at locations below the actual wind turbine hub. Wind conditions change in shape with air density, and air density is most affected by the variable sterrain and surface type. So the magnitude of wind speed depends on the ground altitude. If wind conditions are measured at a location below the wind turbine hub, the wind speed has to be extrapolated to the hub height. This correction of wind speed according to height is done with the Deacon equation used in the statistical analysis of previously observed data. In this study, the optimal Deacon equation parameter was obtained through the analysis of the correction of the wind speed error with the Deacon equation based on the characteristics of terrain.

Bending and Bonding Strength Performances of Larix Block-glued Glulam (낙엽송 블록접착집성재의 접착 및 휨 강도 성능)

  • Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.315-322
    • /
    • 2016
  • Block-glued glulam is a structural material that can be used as a construction member of a large-section wooden building, which is produced by edgewise bonding of two or more glulam beam elements. The edgewise bonding performance of the block-glued glulam was examined through delamination test and block shear strength test. According to the test results, the block-glued glulam that was manufactured with 1.5 MPa of compressive pressure after applying $500g/m^2$ of Resorcinol adhesive showed the best edgewise bonding performance. The block-glued glulam produced in a good edgewise bonding condition was compared with a control glulam with the same section modulus for bending strength performance. The modulus of elasticity (MOE) in bending was similar to that of the control glulam. The modulus of rupture (MOR) of the block-glued glulam was higher by 27% than that of the control glulam. No interfacial failure or cohesive failure were observed in the edgewise bonding layer.

Development of DCOC Algorithm Considering the Variation of Effective Depth in the Optimum Design of PRC Continuous Beam (PRC연속보 최적설계에서 단면의 유효깊이 변화를 고려한 DCOC알고리즘 개발)

  • 조홍동;한상훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.281-291
    • /
    • 2002
  • This paper describes the minimum cost design of prestressed reinforced concrete (PRC) hem with rectangular section. The cost of construction as objective function which includes the costs of concrete, prestressing steel, non prestressing steel, and formwork is minimized. The design constraints include limits on the minimum deflection, flexural and shear strengths, in addition to ductility requirements, and upper-Lower bounds on design variables as stipulated by the specification. The optimization is carried out using the methods based on discretized continuum-type optimality criteria(DCOC). Based on Kuhn-Tucker necessary conditions, the optimality criteria are explicitly derived in terms of the design variables - effective depth, eccentricity of prestressing steel and non prestressing steel ratio. The prestressing profile is prescribed by parabolic functions. In this paper the effective depth is considered to be freely-varying and one uniform for the entire multispan beam respectively. Also the maximum eccentricity of prestressing force is considered in every span. In order to show the applicability and efficiency of the derived algorithm, several numerical examples of PRC continuous beams are solved.