• Title/Summary/Keyword: shear angle

Search Result 1,306, Processing Time 0.027 seconds

Evaluation of Shear Behavior of Beams Strengthened in Shear with Carbon Fiber Reinforced Polymer with Mohr's Circle (모어써클을 활용한 탄소섬유 전단보강된 보의 전단거동 평가)

  • Kim, Yun-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.527-534
    • /
    • 2016
  • Beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP) which had different transverse reinforcement ratio were tested to evaluate shear contribution in the CFRP and to analyze shear behavior of each test with Mohr's circle. Strain in the CFRP should be evaluated to estimate the shear contribution in the CFRP which is brittle material. Test results were compared each other based on the Mohr's circle which can correlate shear strain with both principal tensile strain and crack angle. With low transverse steel ratio, shear strengthening with CFRP not only increases the shear strength effectively but also minimizes the loss in shear contribution of concrete by limiting the development of crack. With high transverse steel ratio, the effect on shear strengthening with CFRP is not as much as the beam with low ratio. Therefore, the shear contribution in the CFRP should be evaluated based on the strain compatibility which can consider the interaction between steel and CFRP when determining the shear capacity of a strengthened member.

Numerical Analysis of Load Bearing Behavior of Shallow Foundations (얕은기초의 하중지지거동에 관한 수치해석)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6322-6328
    • /
    • 2014
  • Finite element analyses were performed to find out the load bearing behavior of three kinds of shallow foundations. The analysis results for strip footing showed that local shear failure mode could be observed for a zero dilatancy angle and general shear failure mode could be seen for non-zero dilatancy angles. The ultimate bearing loads for non-zero dilatancy angles were approximately 1.5 times higher than that of a zero dilatancy angle. General shear failure mode was observed for circular footing and square footing regardless of the dilatancy angle. The ultimate bearing loads for a non-zero dilatancy angle were slightly greater than that for a zero dilatancy angle. A comparison of the load-settlement curves for three kinds of footing showed that the load bearing capacities for non-zero dilatancy angle were greater than those for a zero-dilatancy angle.

The Wall Shear Rate Distribution Near an End-to-End Anastomosis : Effects of Graft Compliance and Size

  • Rhee, Kye-Han
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • The patency rates of small diameter vascular grafts are disappointing because of the formation of thrombus and intimal hyperplasia. Among the various factors influencing the success of graft surgery, the compliance and the size of a graft are believed to be the most important physical properties of a vascular graft. Mismatch of compliance and size between an artery and a graft alters anastomotic flow characteristics, which may affect the formation of intimal hyperplasia. Among the hemodynamic factors influencing the development of intimal hyperplasia, the wall shear stress is suspected as the most important one. The wall shear stress distributions are experimentally measured near the end-to-end anastomosis models in order to clarify the effects of compliance and diameter mismatch on the hemodynamics near the anastomosis. The effects of radial wall motion, diameter mismatch and impedance phase angle on the wall shear rate distributions near the anastomosis are considered. Compliance mismatch generates both different radial wall motion and instantaneous diameter mismatch between the arterial portion and the graft portion during a flow cycle. Mismatch in diameter seems to be affecting the wall shear rate distribution more significantly compared to radial wall motion. The impedance phase angle also affects the wall shear rate distribution.

  • PDF

A Study on the Estimation and Application of Failure Coefficients of Rock (암석의 파괴조건계수 평가 및 적용성에 관한 연구)

  • 장명환;양형식
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.103-116
    • /
    • 1998
  • To estimate pure shear strength, 150 sets of triaxial test data were analyzed. The proportional coefficient of shear strength($I_c$) at zero normal stress was nonlinearly decreased as failure coefficient m increases, while the internal friction $\phi_0$ at zero normal stress was nonlinearly increased. The ratio of shear strength $(c/\phi_0)$was inversely proportional to the ratio of the internal friction angles$(\phi/phi_0)$ The shear strength decreased as m increased, while internal friction angle increased. And uniaxial strength was proportional to $c,\phi$ Regression analysis showed that shear strength strongly affects m and $\sigma_c$ The proportional coefficient of shear strength was nonlinearly increased with RMR, while the internal friction angle $(\phi}$was linearly decreased.

  • PDF

Bending Assessment of Antisymmetric Angle-ply Composite Sandwich Plates with Various Shear Deformation Functions (전단변형함수에 따른 역대칭 앵글-플라이 복합면재를 갖는 샌드위치판의 휨거동 평가)

  • Park, Weon-Tae;Chun, Kyoung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5347-5356
    • /
    • 2011
  • In this paper, we compared various shear deformation functions for modelling anti-symmetric composite sandwich plates discretized by a mixed finite element method based on the Lagrangian/Hermite interpolation functions. These shear deformation theories uses polynomial, trigonometric, hyperbolic and exponential functions through the thickness direction, allowing for zero transverse shear stresses at the top and bottom surfaces of the plate. All shear deformation functions are compared with other available analytical/3D elasticity solutions, As a result, reasonable accuracy for investigated problems are predicted. Particularly, The present results show that the use of exponential shear deformation theory provides very good solutions for composite sandwich plates.

TEMPORAL CHANGE OF MAGNETIC SHEAR FREE FROM THE 180° AMBIGUITY

  • MOON Y.-J.;WANG HAIMIN;SPIROCK THOMAS J.;PARK Y. D.
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.3
    • /
    • pp.143-149
    • /
    • 2002
  • In this paper we present a methodology to derive the temporal change of the magnetic shear angle from a series of vector magnetograms, with a high time cadence. This method looks for the minimum change of the shear angle between a pair of magnetograms, free from the $180^{\circ}$ ambiguity, and then accumulates this change over many successive pairs to derive the temporal change of magnetic shear. This methodology will work well if only the successive magnetograms occurred in an active region are well aligned and its helicity sign is reasonably determined. We have applied this methodology to a set of vector magnetograms of NOAA Active Region 9661 on October 19, 2001 by the new digital magnetograph at the Big Bear Solar Observatory (BBSO). For this work we considered well aligned magnetograms whose cross-correlation values are larger than 0.95. As a result, we have confirmed the recent report of Wang et al. that there was the abrupt shear change associated with the X1.6 flare. It is also demonstrated that the shear change map can be an useful tool to highlight the local areas that experienced the abrupt shear change. Finally, we suggest that this observation should be a direct support of the emergence of sheared magnetic fields.

Study on the Estimation Model of Shear Strength at Rock Joint and Its Influence Factor (암석절리면 전단강도 예측모델 및 영향요소에 관한 연구)

  • Son, Moorak
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.5-12
    • /
    • 2023
  • This study investigates the existing models for estimating the shear strength of rock joints, presents related problems, and introduces a newly proposed model to overcome the problems. The results of many experimental tests show that the shear strength of a rock joint depends on many complex factors, including asperity angle, compressive strength, applied normal stress, friction angle, asperity cohesive strength, and progressive damage of asperities. However, the existing models do not account for these factors enough. To overcome these problems, Son (2020) developed a new model to estimate the shear strength of rock joints and confirmed its reliability by comparing with experimental results and existing models. In this paper, the developed model was used to investigate the various factors that affect the joint shear strength, and the results were compared and analyzed. Through this study, the factors that affect the shear strength of the rock joint could be identified in more detail.

Estimation of Shear Strength of Discontinuous (bedding) Cut Sedimentary Rock Slope by Using Back Analysis (역해석을 통한 퇴적암 절취비탈면 불연속면(층리)의 전단강도 추정)

  • Kim, Chang-Ho;Kim, Bong-Yong;Park, Tae-Wan;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.139-152
    • /
    • 2018
  • This study is an analysis of slope failure examples of cut sedimentary hills during construction road in Kyoungsang Basin, especially Yangsan Fault system (Ilkwang-Dongrae fault). This area involved a lot of hillslope failures compared to other areas during road construction. The exposed failure slopes were first face-mapped, and then back analyzed based on the limit equilibrium method to assess the shear strength parameters of discontinuity (bedding). The results of this analysis indicate that the shear strength parameters of discontinuity (bedding) are significantly smaller than those used in the design stage and presented in the existing works. The filling in the bedding and emerging groundwater may be decreasing strength parameters. Especially, the clay in the bedding plays a key role in the effect of the shear strength. The study also suggests that the bedding angle and the internal friction angle are proportional to each other. Using this relationship and knowing the bedding angle, the friction can easily be estimated.

The Shear and Friction Characteristics Analysis of Inconel 718 during End-milling process using Equivalent Oblique Cutting System I -Up Endmilling- (등가경사절삭 시스템에 의한 Inconel 718 엔드밀링 공정의 전단 및 마찰특성 해석 I -상향 엔드밀링-)

  • Lee, Young-Moon;Yang, Seung-Han;Choi, Won-Sik;Song, Tae-Seong;Gwon, O-Jin;Choe, Yong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.79-86
    • /
    • 2002
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting system. According to this analysis, when cutting Inconel 718, 61, 64 and 55% of the total energy is consumed in the shear process with the helix angle 30$^{\circ}$, 40$^{\circ}$ and 50$^{\circ}$ respectively, and the balance is consumed in the friction process. With the helix angle of 40$^{\circ}$ the specific cutting energy consumed is smaller than with the helix angle 30$^{\circ}$ and 50$^{\circ}$.

Deformation Behavior of 6063 Al Alloy Deformed by Shear-Drawing Method (전단-신선 가공된 6063 알루미늄 합금의 변형거동)

  • Ko, Young Gun;Lee, Byung Uk;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.291-297
    • /
    • 2011
  • This work investigated the microstructure and mechanical properties of 6063 Al alloy fabricated by shear-drawing (SD) technique where shear and drawing strains were combined together within a predetermined die. To find the optimum condition for sound deformation, three different dies having different inner angle and diameter of the exit channel were prepared. After single deformation of the present sample, the sound deformation took place without an abrupt failure of the sample if the inner angle would be greater than $135^{\circ}$ in this study, when the channel diameter of the SD die was reduced from 10 to 9 mm. Microstructural observation showed that the inner angle of $135^{\circ}$ was found to be more effective than that of $150^{\circ}$ in terms of the alignment of each grain to the shear direction imposed by SD method. In addition, the yield strength of the SD-deformed sample was twice higher than that of the initial counterpart while loosing ductility in tension.