• Title/Summary/Keyword: shaving scrap

Search Result 8, Processing Time 0.02 seconds

Preparation and Characterization of the Hydrolyzed Protein from Shaving Scraps of Leather Waste Containing Chromium by the Combination Treatment with Alkaline Inducing Agent and Alkaline Proteolytic Enzyme (Alkaline Inducing Agent 및 Alkaline Proteolytic Enzyme 혼용처리에 의한 Shaving Scraps 가수분해 단백질의 제조 및 특성)

  • Kim, Won-Ju;Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • To examine the possibility of protein recycling of shaving scraps containing chromium generated from manufacturing process of leather, the optimum hydrolysis conditions and the withdrawal methods of low molecular weight protein for using the liquid fertilizer sources by investigation of solubilities of hydrolyzed protein, inorganic nutrients contents and molecular weight distributions of hydrolyzed protein from shaving scraps treated with mixed alkaline inducing agents and mixed alkaline proteolytic enzymes including MgO were investigated. In hydrolysis of shaving scraps treated with mixed alkaline inducing agents, the solubility of shaving scraps were clearly different with 65~85% according to the sorts of the inducing agents, and the degree of hydrolysis was high in the order of NaOH, $Ca(OH)_2$ and KOH. The average molecular weights of withdrawal hydrolyzed protein were 10, 40 and 80 KD treated with NaOH, $Ca(OH)_2$ and KOH, respectively. And the chromium contents was about 15 ppm. In hydrolysis of shaving scraps treated with mixed alkaline proteolytic enzymes, the bility of shaving scraps were high in the order of alcalase, esperase and savinase. In c of treating 0.5% alcalase, the low molecular weight of hydrolyzed protein could be withdrawn. The solubility of the hydrolyzed protein was about 85%, the average molecular weight of the protein was below 1 KD and chrome content of the protein was below 10 ppm.

  • PDF

Preparation and Characterization of the Hydrolyzed Protein from Shaving Scraps of Leather Waste Containing Chromium (피혁폐기물(皮革廢棄物)인 Shaving scraps으로 부터 가수분해(加水分解) 단백질(蛋白質)의 제조(製造) 및 특성(特性))

  • Kim, Won-Ju;Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.2
    • /
    • pp.47-56
    • /
    • 1997
  • To examine of possibility protein recycling of shaving scraps contained chrome generated from manufacturing process of leather, the characteristics of hydrolyzed protein that differently treated with MgO as alkaline agent were investigated. In alkaline hydrolysis of saving scraps treated with MgO, MgO had to be treated over 5.0% to maintain over pH 8.0 that is insoluble of chrome. Under the condition of alkaline treated with MgO, the solubility of chrome is low with about 60%. The average molecular weight of hydrolyzed proteins from shaving scraps treated with MgO was about 80~100 KD. The amino acid contents of that were largely collagen proteins such as glycine, alanine and proline, and acidic amino acids such as aspartic acid and glutatamic acid. The contents of Mg, Ca and Na in hydrolyzed protein were too much as liquid fertilizer, and chrome contents was 30~40 ppm that largely decreased in comparing with raw materials (40,000~42,000 ppm).

  • PDF

A Study on Anti-Aging Properties of Recycled Leather Using Shaving Scrap by Applying Antioxidant (피혁 폐기물을 재활용한 재생가죽의 내노화특성 연구)

  • Eun Ho Seo;Sung Wook Lim;Yun Seob Lee;Won Joo Kim;Eun Young Park
    • Textile Coloration and Finishing
    • /
    • v.35 no.3
    • /
    • pp.151-158
    • /
    • 2023
  • In this study, we investigated the durability properties of the recycled leather using shaving scrap with antioxidant. Recycled leather sheets were manufactured by mixing shaving scrap and NB latex as a binder. HALS(Hindered Amine Light Stabilizer) and UVA(UV absorbers) were used as antioxidant. Mechanical properties such as hardness, tensile strength, elongation, tear strength and abrasion resistance were measured. Light aging resistance was evaluated using UV lamp and the degree of discoloration of the recycled leather sheets using a gray scale. In addition, to evaluate heat aging and UV aging, the degree of discoloration of the recycled leather sheets over time was measured using colorimeter. Washing fastness was evaluated on the degree of dyeing of recycled leather sheets for six type of multi-fiber woven fabrics (Acetate, Cotton, Nylon-66, Polyester, Acryl, Wool). To determine whether hazardous substances were detected in recycled leather sheets, the contents of arylamine and Cr 6+ were evaluated. As a result, when used in combination with antioxidant, the heat aging and light aging of recycled leather were improved and hazardous substance were not detected.

Manufactures of Agricultural grade Gelatin from Cr Tanned Leather Wastes (중금속 Cr 함유 피혁 폐기물로부터 농업용 Gelatin 제조)

  • Kim, Won-Ju;Ko, Jae-Yong;Heo, Jong-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.93-103
    • /
    • 2001
  • Once of recent issue in the leather industry is disposal of shaving scrap containing chromium. Shaving scrap is indispensible generated by control of the final thickness in the leather making process. It is the flesh layer of the skin consisting mainly of collagen. More recently, we have tried to improve the quality of the isolated gelatin. The purpose of this research was to extract gelatin for agricultural usage. As a result, it does not contain Cr and could obtained to a good gelatin that have more than 130,000Da. average molecular weight, more than 30 mps viscosity and more than 100g jelly strength. Gelatin that is extracted by alkaline condition expected to be available to high performance gelatin such as material of organic fertilizer(ex, Nitrogen-release fertilizer).

  • PDF

Synthesis and Characterization of Collagen Peptide Based Copolymer from Shaving Scrap (셰이빙 스크랩으로부터 콜라겐 펩타이드계 공중합체 합성과 특성)

  • Park, Min Seok;Shin, Soo Beom;Kim, Ho Soo;Kim, Min Soo;Kim, Ha Sun;Jang, Jae Hyeok;Lee, Jin Kye;Lee, Dong Kuk
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.581-587
    • /
    • 2022
  • The leather industry generates a large amount of hazardous leather waste of various types every year. Among them, shaving scrap is difficult to recycle because it contains chromium ions. Many studies in recent years have shown that shaving scraps can be processed into various types of valuable products, such as adsorbent, filler, and poultry feed. In this study, collagen peptides were extracted from shaving scraps and structurally modified to be developed as new materials with improved physicochemical properties. First, the chromium ions contained in the shaving scraps were removed using a sodium hydroxide solution, and purified through concentration and low-temperature crystallization. The purified collagen peptide was used to prepare the powder using a spray dryer. The extracted collagen peptides were structurally modified by introducing double bonds by reacting with methacrylic anhydride (MAA), and the product was confirmed by 1H NMR spectroscopy. Next, a copolymer was prepared by redox polymerization of the modified collagen peptide (MCP) and 2-ethylhexyl acrylate (2-EHA). The structure of the copolymer was qualitatively confirmed by FT-IR. In conclusion, this study confirmed that collagen peptides can be extracted from shaving scrap and converted into new eco-friendly materials through certain treatments.

Study on the Manufacturing of Leather-like Material using Leather and Textile Scrap (피혁 및 섬유 제조공정 폐기물을 활용한 피혁 대체 소재의 제조에 관한 연구)

  • Kim, Won-Ju;Ko, Jae-Yong;Heo, Jong-Soom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.93-99
    • /
    • 2000
  • Treatment of shaving scrap, a chrome containing solid scrap generated by leather manufacturing process, has been so far depended on mainly incineration, soil landfill and ocean dumping, which give bad impact on environment and cause pollution. Shaving scrap generates from the mechanical work for controlling the final thickness of leather and its main components are collagen protein and pan of chromium compound. For the purpose of reusing this leather waste as resources, researches in connection with collagen fiber recovery, gelable protein recovery and liquid fertilizer is being speedily progressed. In the experiment, shaving scrap went through wet pulverizing treatment by physical and chemical methods. Then, making the leather sheet evenly, it is mixed with natural latex and every kind of binding materials in the container, and the mixtures were passed through experimental hydraulic press machine and applied to Fourdrinier machine respectively. Lastly, a test for fading out physical strength and properties of multiple-purpose of leather-like material was performed on a continuous leather sheet prepared by the experiment. In result, the physical strength and properties of leather-like material showed noticeable differences according to mixing ratio of binding materials, beating methods and the Ends of binding materials selected, and generally tear strength was the weakest property among others. Also, by the pilot scale experiment in sequence, it was possible to manufacture recycled goods made of soft and hard types of leather-like material with various performances.

  • PDF

Design of shearing process to reduce die roll in the curved shape part of fine blanking process (파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계)

  • Yong-Jun Jeon
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.

Localization development of environmentally-friendly high-functional outsole material using leather scrap (피혁폐기물을 활용한 친환경 고기능성 아웃솔 소재의 국산화 개발방안)

  • Sang, Jeong Seon;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • To solve environmental problems, research and efforts are required to reduce leather waste that is generated in large quantities during the leather manufacturing process. Leatherboard is a plate-like material that is made by crushing leather waste, such as trimming or shaving scraps and mixing fibers, pulp, rubber, and adhesives. The aim of this study is to provide basic data on the localization of leatherboard manufacturing technology for outsoles, which are increasingly in demand due to their excellent performance and price competitiveness. Interviews with experts and related organizations were conducted to investigate the related global technology trends. Also, the performance of three products that can be used as reference materials were evaluated and compared. As part of the research and efforts to reduce the amount of leather waste generated, high-performance materials using leather waste were developed and commercialized by major western companies. In Korea, various efforts have been made since 2000, and some companies have produced leatherboard for interior uses. However, the amount of waste recycled relative to that generated is not large due to the limited demand. Natural leather soles perform better than leatherboard soles in all evaluation aspects. In the case of leatherboard, performance varied by manufacturer. German products showed flexibility resistance and dimensional stability, thereby meeting performance requirements. However, abrasion resistance and cleavage resistance were slightly below the required performance standards, and research and development is needed to improve performance in those areas. Currently, it is impossible to evaluate the performance of domestic products due to underdevelopment. However, if the development of process technology continues based on the performance evaluation results of the best leatherboard in the shoe industry, materials for outsoles will be able to be produced domestically with prices competitiveness while realizing natural leather materials performance to some extent.