• 제목/요약/키워드: shapelet transform

검색결과 2건 처리시간 0.018초

Data anomaly detection for structural health monitoring of bridges using shapelet transform

  • Arul, Monica;Kareem, Ahsan
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.93-103
    • /
    • 2022
  • With the wider availability of sensor technology through easily affordable sensor devices, several Structural Health Monitoring (SHM) systems are deployed to monitor vital civil infrastructure. The continuous monitoring provides valuable information about the health of the structure that can help provide a decision support system for retrofits and other structural modifications. However, when the sensors are exposed to harsh environmental conditions, the data measured by the SHM systems tend to be affected by multiple anomalies caused by faulty or broken sensors. Given a deluge of high-dimensional data collected continuously over time, research into using machine learning methods to detect anomalies are a topic of great interest to the SHM community. This paper contributes to this effort by proposing a relatively new time series representation named "Shapelet Transform" in combination with a Random Forest classifier to autonomously identify anomalies in SHM data. The shapelet transform is a unique time series representation based solely on the shape of the time series data. Considering the individual characteristics unique to every anomaly, the application of this transform yields a new shape-based feature representation that can be combined with any standard machine learning algorithm to detect anomalous data with no manual intervention. For the present study, the anomaly detection framework consists of three steps: identifying unique shapes from anomalous data, using these shapes to transform the SHM data into a local-shape space and training machine learning algorithms on this transformed data to identify anomalies. The efficacy of this method is demonstrated by the identification of anomalies in acceleration data from an SHM system installed on a long-span bridge in China. The results show that multiple data anomalies in SHM data can be automatically detected with high accuracy using the proposed method.

다변량 신호 데이터 분류를 위한 확장 셰이플릿 변환 기법 (A Study on Random Dilated Shapelet Transform for classifying multivariate signal data)

  • 정종민;손재성;박재성;이상민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.709-711
    • /
    • 2023
  • 안전관리를 위한 인공지능 기술은 꾸준히 연구되고 있는 분야다. 특히, 컴퓨터 비전 기술을 활용한 CCTV 영상 분석은 군중의 동선과 밀도를 파악하는데 유용하며, 대규모 실내 공간에서 체계적인 안전관리를 가능하게 한다. 그러나 기존의 CCTV 카메라를 사용한 군중 수 추정은 가려짐(occlusion)과 같은 한계가 있다. 본 논문은 무선 랜 신호 데이터 분석 기법을 활용하여 수집한 데이터를 활용하여 실내 환경에서 군중 수를 추정하고자 한다. 본 논문에서는 인원 수 분류 예측을 위해 셰이플릿 확장 변환(Random Dilated Shapelet Transform) 기법을 제안한다. 단일 데이터 세트 내 분류 결과와, TX, RX 배치 방식에 따른 분류 성능의 차이는 모델의 성능 부족보다 데이터의 특성을 고려한 새로운 접근 방법의 필요성을 알려준다.