• Title/Summary/Keyword: shape ratio

Search Result 3,126, Processing Time 0.03 seconds

A Study on the Distribution of the Elementary Girls' Size Dimensions according to Ages and Body Shapes (학령기 여아 연령별, 체형별 치수분포특성)

  • Kang, Yeo-Sun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.2
    • /
    • pp.230-243
    • /
    • 2009
  • The purpose of this study was to analyse the body sizes of $7{\sim}12$ years elementary school girls and also to categorize KS size dimensions by the detailed information of ages and body shapes. For the study, the data of SizeKorea(2004) was analysed. Height, bust, waist, hip, the ratio of waist to height and hip to height were significant between age groups, but the ratio of bust to height was not. Therefore, the increase of bust size was resulted in growth of bust circumference, instead of bust volume. In the same height group, over 11 year girls had smaller waist, while over 12 year girls had bigger hip. For Grouping girls by ages and body shapes, the ages were divided into 2 groups, under 10 years old and 11 to 12 years old. The body shapes classified into 3 groups 'Stout-shape', 'Middle-shape', and 'slim-shape', by the ratios of bust to height and hip to height. 'Stout-shape' was significantly big at the almost sizes, but 'Middle-shape' was significantly big at only circumferences, not lengths. In addition, drop(the difference between bust and hip) and lower-drop(the difference between waist and hip) were in inverse proportion to the ratios of bust to height and hip to height. It meant the increases of bust-ratio and hip-ratio of 'Stout-shape' were resulted in overweight, rather than female matureness. The distribution of sizes over 0.5% were grouped for grading system and the subtotal percentiles of each group were calculated for industrial data. The groups which covered more than 10% of consumers were 2 to 6 and the 1 or 2 groups for 'Stout-shape' were also observed, so that children's ready-to wear companies could use them efficiently for their own consumer target.

Development of Polygonal Model for Shape-Deformation Analysis of Amorphous Carbon Hard Mask in High-Density Etching Plasma (고밀도 식각 플라즈마에서 비정질 탄소 하드 마스크의 형상 변형 해석을 위한 다각형 모델 개발)

  • Song, Jaemin;Bae, Namjae;Park, Jihoon;Ryu, Sangwon;Kwon, Ji-Won;Park, Taejun;Lee, Ingyu;Kim, Dae-Chul;Kim, Jong-Sik;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.53-58
    • /
    • 2022
  • Shape changes of hard mask play a key role in the aspect ratio dependent etch (ARDE). For etch process using high density and energy ions, deformation of hard mask shape becomes more severe, and high aspect ratio (HAR) etch profile is distorted. In this study, polygonal geometric model for shape-deformation of amorphous carbon layered hard mask is suggested to control etch profile during the process. Mask shape is modeled with polygonal geometry consisting of trapezoids and rectangles, and it provides dynamic information about angles of facets and etched width and height of remained mask shape, providing important features for real-time HAR etch profiling.

A Study on Shape Design of the Passenger Airbag for Efficiency Improvement (조수석 에어백 성능 개선을 위한 형상 설계연구)

  • Yang, Sunghoon;Yim, Jonghyun;Kim, Seungki;Chae, Soo-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.242-249
    • /
    • 2017
  • In this study, the relationship between the shape of a passenger airbag and the possibility of injury is analyzed using the Taguchi method. The optimal shape combination is proposed for a design guideline that can reduce the possibility of injury to the dummy. The airbag FE model for analysis is obtained using a CAD system that can change the shape through several independent variables. The widths of the left / right, top / bottom, and back / forth direction of the airbag shape are set as the design factors, and the effect of the combination injury probability according to the shape is analyzed. The minimum geometric combinations are obtained using the orthogonal array method. The signal to noise ratio is calculated and the optimal shape combination is obtained through sensitivity analysis. The obtained optimal shape combination is compared with the possibility of injury of the initial airbag shape to confirm improved airbag performance.

Effect of Hot Forging on the Hardness and Toughness of Ultra High Carbon Low Alloy Steel (초 고 탄소 저합금강의 경도와 인성에 미치는 열간단조의 영향)

  • Kim, Jong-Beak;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.115-121
    • /
    • 2013
  • This study was carried out to investigate the effect of hot forging on the hardness and impact value of ultra high carbon low alloy steel. With increasing hot forging ratio, thickness of the network and acicular proeutectoid cementite decreased, and than were broken up into particle shapes, when the forging ratio was 80%, the network and acicular shape of the as-cast state disappeared. Interlamellar spacing and the thickness of eutectoid cementite decreased with increasing forging ratio, and were broken up into particle shapes, which then became spheroidized. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up 50%, and then hardness rapidly decreased, while impact value rapidly increased. Hardness and impact value was greatly affected by the disappeared of network and acicular shape of proeutectoid cementite, and became particle shape than thickness reduction of proeutectoid and eutectoid cementite.

Analysis of Intercepted Flow Characteristics by Accumulated Debris (부유잡목에 의한 흐름차단이 하천에 미치는 영향 분석)

  • Choi, Gye-Woon;Kim, Young-Gyu;Hwang, Young-Man;Cho, Sang-Wook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.846-850
    • /
    • 2007
  • In this study debris like branch or trash are washed and flowed from land to stream by rainfall runoff at mountain or urban stream specially rainy season. These kinds of debris are accumulated at hydraulic construct on the way of flow along the stream. The shape or ratio of like these accumulated debris are various according to the location where it is accumulated and the material what it is, so that it is influenced to be varied to flow characteristics. To be simple of accumulated debris shape, it was made experiments though the variation of open ratio and the shape of accumulated debris by lab experiment using straight channel with two piers. From the result, the water level is inverse proportion to open ratio, and the water level more sensitive to the debris‘ width than length at the same area of accumulated debris.

  • PDF

Likelihood based inference for the shape parameter of Pareto Distribution

  • Lee, Jae-Un;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1173-1181
    • /
    • 2008
  • In this paper, when the parameter of interest is the shape parameter in Pareto distribution, we develop likelihood based inference for this parameter. Specially, we develop signed log-likelihood ratio statistic and the modified signed log-likelihood ratio statistic for the shape parameter. It is well-known that as sample size grows, the modified signed log-likelihood ratio statistic converges to standard normal distribution faster than the signed log-likelihood ratio statistic. But the computation of the modified signed log-likelihood statistic is hard or even impossible when the sufficient statistics and the ancillary statistics are not clear. In this case, one can consider an approximation to the modified signed log-likelihood statistic. Specially, when the parameter of interest is informationally orthogonal to the nuisance parameters, we propose the approximate modified signed log-likelihood statistic. Through simulation, we investigate the performances of the proposed statistics with the signed log-likelihood statistic.

  • PDF

Optimal shape of LCVA for vibration control of structures subjected to along wind excitation

  • Park, Ji-Hun;Min, Kyung-Won
    • Smart Structures and Systems
    • /
    • v.10 no.6
    • /
    • pp.573-591
    • /
    • 2012
  • In this study, a procedure to design an optimal LCVA that maximizes the equivalent damping ratio added to the primary structure subjected to along-wind excitation is proposed. That design procedure does not only consider the natural frequency and damping ratio of the LCVA, but also the proportion of the U-shaped liquid, which is closely related to the participation ratio of the liquid mass in inertial force. In addition, constraints to ensure the U-shape of the liquid are considered in the design process, so that suboptimal solutions that violate the optimal tuning law partly are adopted as a candidate of the optimal LCVA. The proposed design procedure of the LCVA is applied to the control of the 76-story benchmark building, and the optimal proportions of the liquid shape under various design conditions are compared.

Compaction Management of Fill Materials for Concrete Faced Rockfill Dam Using Standard Void Ratio (표준간극비를 이용한 콘크리트 표면차수벽형 석괴댐 축조재료의 다짐 관리)

  • Kim Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.59-66
    • /
    • 2006
  • In this study, construction modulus, void ratio and settlement characteristics of 38 CFRD in domestic and foreign countries were investigated from monitoring data. The effect of field dry density and void ratio to dam body was analyzed. The standard void ratio of CFRD that can be easily used by dam designers and field engineers was proposed from the monitoring data. It was confirmed that we can get the degree of compaction needed for reasonable compaction of dam body by calculating the field dry density from inverse operation of the standard void ratio. It was thought that the void ratio of CFRD depends on shape coefficient and in case of a high shape coefficient, the void ratio was high with its void ratio 0.17 -0.38.

Evaluation of the Optimal Grouser Shape Ratio of Dozer Considering the Ground Conditions (지반 특성을 고려한 도저의 최적 그라우저 형상비 평가)

  • Baek, Sung-Ha;Kwak, Tae-Young;Choi, Changho;Lee, Seong-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.31-41
    • /
    • 2021
  • A dozer is a construction machinery used to move soil mass along large open tracts of land. Soil thrust generated on the soil-track interface determines the performance of the dozer; to improve the tractive performance of the dozer, the outer surface of the continuous-track is designed to protrude with grousers. In this study, we calculated soil thrust of the dozer equipped with grousers with various shape ratios, and evaluated the optimal grouser shape ratio considering ground conditions. Grouser generated additional soil thrust on the side of the continuous-track (e.g., side soil thrust) and converted the shearing surface (e.g., from soil-track interface to soil-soil interface), increasing the soil thrust of dozer by about 1.3 to 1.6 times. The effect of grouser's shape ratio on the soil thrust of dozer differed with the relative density of the ground. As the shape ratios of grouser increased, soil thrust of dozer decreased at the relative density of 40% and increased at the relative density of 80%. Based on these results, it can be concluded that the shape ratio of grouser severely affects the dozer's performance; thus, careful consideration of the optimal shape ratio of grouser is of great importance in the mechanical design, evaluation, and optimization of the undercarriage of dozers.

Deep Drawing With Internal Air-Pressing to Increase The Limit Drawing Ratio of Aluminum Sheet

  • Moon, Young-Hoon;Kang, Yong-Kee;Park, Jin-Wook;Gong, Sung-Rak
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.459-464
    • /
    • 2001
  • The effects of internal air-pressing on deep drawability are investigated in this study to increase the deep drawability of aluminum sheet. The conventional deep drawing process is limited to a certain limit drawing ratio(LDR) beyond which failure will occur. The intention of this work is to examine the possibilities of relaxing the above limitation through the deep drawing with internal air-pressing, aiming towards a process with an increased drawing ratio. The idea which may lead to this goal is the use of special punch that can exert high pressure on the internal surface of deforming sheet during the deep drawing process. Over the ranges of conditions investigated for Al-1050, the local strain concentration at punch nose radius area was decreased by internal air-pressing of punch, and the deep drawing with internal air-pressing was proved to be very effective process for obtaining higher LDR.

  • PDF