• Title/Summary/Keyword: shape properties

Search Result 3,215, Processing Time 0.029 seconds

A Study on the Expression Method of Immateriality in Contemporary Architectural Space - Kengo Kuma and Herzog & De meuron - (현대건축공간에 나타나는 비물성 표현방식에 관한 연구 - 쿠마겐코와 헤르조그&드뮤론을 중심으로 -)

  • Yoo, Jong-Ho;Lee, Jung-Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.1
    • /
    • pp.3-13
    • /
    • 2014
  • After The Industrial Revolution in 18th century, constructions were done with universal material (concrete) in everywhere instead of using materials that are produced in each country because of development of industry material and transportation. This change caused the buildings to become trite with no local characteristics. Hereupon, the study intends to understand the essence of matter and restore various construction methods of each matter with the topic of 'Immateriality'. Immateriality is the revealed concept based on Materiality. Consequently the process and characteristics of immateriality shown on the works of Kuma Kengo and Herzog & de Meuron, three kinds of features can be found of immateriality expression mode. They are as in the following. First, there is a mode of transforming the shape and properties in physical or psychological way by observer. Second, there is a mode of conflating the shape and properties in physical or psychological way by observer. Third, there is a mode of mixing the shape and properties in physical or psychological way by observer.

A Review on Size, Shape and Velocity of a Bubble Rising in Liquid (총설: 액체 중에서 상승하는 기포의 크기, 형상 및 속도)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Accurate prediction of size, shape and velocity of a bubble rising through a liquid pool is very important for predicting the particulate removal efficiency in pool scrubbing, for designing engineering safety features to prepare for severe accidents in nuclear power plants, and for predicting the emission of fission products from MCCI (molten core-concrete interaction) process during severe accidents. In this review article, previous studies on the determination of the size, shape and rising velocity of a bubble in liquid are reviewed. Various theoretical and parameterization formulas calculating the bubble size, shape and velocity from physical properties of liquid and gas flowrate are compared. Recent studies tend to suggest simple parameterizations that can easily determine the bubble shape and rising velocity without iteration, whereas iteration has to be performed to determine the bubble shape and velocity in old theories. The recent parameterizations show good agreement with measured data obtained from experiments conducted using different liquid materials with very diverse physical properties, proving themselves to be very useful tools for researchers in related fields.

Synthesis of Polyurethanes Containing Poly(dimethyl siloxane) and Their Thermal and Shape Memory Properties (폴리디메틸실록산 성분을 포함하는 폴리우레탄의 합성과 이들의 열적 및 형상기억 특성)

  • Ra, Sang Hee;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.602-612
    • /
    • 2014
  • Polyurethanes containing poly(dimethyl siloxane) (PDMS) unit, PU-Si, were synthesized and their thermal and shape memory properties were investigated. Various amounts of PDMS units were incorporated via a solution polymerization method using mixed diols of poly(tetramethylene ether glycol) (PTMEG) and PDMS-diol as the soft segment (SS) and methylene diphenyl diisocyanate and 1,4-butanediol as the hard segment (HS). Two series of PU-Si samples with an HS content of 23% or 32% were prepared and analyzed. For PU-Si with an HS content of 23%, both the cold crystallization temperature ($T_{cc}$) and melt crystallization temperature of the SS domain moved higher temperature with increasing PDMS content, while the melting temperature ($T_m$) of the SS domain remained unaffected. The increase in HS content from 23% to 32% resulted in the increased $T_m$ and disappearance of $T_{cc}$. The shape recovery of PU-Si flim with an HS content of 32% increased while its shape retention decreased as PDMS content increased.

Shape Preserving Contrast Enhancement

  • Hwang Jae Ho
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.867-871
    • /
    • 2004
  • In this paper, a new analytic approach for shape preserving contrast enhancement is presented. Contrast enhancement is achieved by means of segmental histogram stretching modification which preserves the given image shape, not distorting the original shape. After global stretching, the image is partitioned into several level-sets according to threshold condition. The image information of each level-set is represented as typical value based on grouped differential values. The basic property is modified into common local schemes, thereby introducing the enhanced effect through extreme discrimination between subsets. The scheme is based on stretching the histogram of subsets in which the intensity gray levels between connected pixels are approximately same In spite of histogram widening, stretched by local image information, it neither creates nor destroys the original image, thereby preserving image shape and enhancing the contrast. By designing local histogram stretching operations, we can preserve the original shape of level-sets of the image, and also enhance the global intensity. Thus it can hold the main properties of both global and local image schemes, which leads to versatile applications in the field of digital epigraphy.

  • PDF

Development of Shape Optimization Scheme Using Selective Element Method (Application to 2-D Problems) (선택적 요소방법을 이용한 형상 최적 설계 기법 개발)

  • Shim, J.W.;Shin, J.K.;Park, G.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.531-536
    • /
    • 2001
  • The structural shape optimization is a useful tool for engineers to determine the shape of a structure. During the optimization process, relocations of nodes happen successively. However, excessive movement of nodes often results in the mesh distortion and eventually deteriorates the accuracy of the optimum solution. To overcome this problem, an efficient method for the shape optimization has been developed. The method starts from the design domain which is large enough to hold the possible shape of the structure. The design domain has pre-defined uniform fine meshes. At every cycle, the method judges whether all the elements are inside of the structure or not. Elements inside of the structure are assigned with real material properties, however elements outside of the structure are assigned with nearly zero values. The performance of the method is evaluated through various examples.

  • PDF

Particle Size and Shape Analysis : The Key to Success in Metal Powder Production

  • Pankewitz, Axel;Park, Yong-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.702-703
    • /
    • 2006
  • The particle size distribution and shape are among the important parameters for characterisation of quality of metal powders. Specific material properties such as ability to flow, reactivity as well as compressibility and its hardening potentials hence the most important characteristics of sintered metals - are determined by the size distribution and shape. The correct particle size distribution and particle shape information are the key to best product quality in atomisation processes of aluminium, milling of pure metals and other processes. This paper presents state-of-the-art technology for characterization of particle size distribution and shape.

  • PDF

Hierarchical active shape model-based video object tracking using wavelet transform (웨이블릿을 이용한 계층적 능동형태모델 기반 비디오 추적기술)

  • ;Vivek Maik
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.161-164
    • /
    • 2003
  • This paper proposes a hierarchical approach to active shape model using wavelet transform. The proposed algorithm allows us to use both global shape characteristics and finer details for model deformation. The statistical properties of the wavelet transform of a deformable model are analyzed by principal component analysis and used as priors in the contour's deformation.

  • PDF

Shape Segmentation by Watersheds (Watershed에 의한 형태분할)

  • 김태진;김주영;고광식
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.573-576
    • /
    • 1999
  • This paper presents a new shape segmentation algorithm. The procedure to achieve complete segmentation consists of two steps : the first step is mapping shape into two dimension by the using Distance Transform, the second step is partitioning the region by using the Watershed algorithm. As a application of the proposed algorithm, we perform the matching experiment for several objects by the use of segmented region. Simulation results demonstrate the efficiency of the proposed method, and the method has scale, rotation, and shift invariant properties.

  • PDF

A Study on the Fabric Drape Evaluation Using a 3D Scanning System Based on Depth Camera with Elevating Device

  • Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.19 no.6
    • /
    • pp.28-41
    • /
    • 2015
  • Properties of textile fabrics influence the appearance, aesthetics, and performance of garment. Drape and related properties of fabrics affect profoundly the static and dynamic appearance during wearer's movement. The three dimensional shape of the folded structure often deforms with time or with subtle vibration around the fabric specimen during the drape measurement. Due to the uneven and complex nature of fabrics, the overall shape of the fabric specimen on the drape tester often becomes unstable. There is a need to understand the fundamental mechanisms of how draping may generate pleasing forms. Two drape test methods, conventional Cusick drape test, and in-built drape tester, based on a depth camera, are compared. Fabric specimens including cotton, linen, silk, wool, polyester, and rayon are investigated for the fabric drape and other physical/mechanical parameters. Drape coefficient values of fabric specimens are compared based on the final drape images, together with the intermediate 3D drape images of the specimens during elevation process of the drape tester equipped with a stepper motor system. The correlation coefficient between the data based on the two methods is reasonably high. Another advantage from the depth camera system is that it allows further analysis of three-dimensional information regarding the fabric drape shape, including the shape of nodes or crest and trough.

Shape-Stabilized Phase Change Materials: Preparation and Properties of Frozen Gels from Polypropylene and n-Eicosane for Latent Heat Storage (형태안정성 PCM: 잠열저장을 위한 Polypropylene과 n-Eicosane으로 구성된 고화젤의 제조 및 특성)

  • Son, Tae-Won;Lim, Hak-Sang;Kim, Tae-Hun;Ko, Jae-Wang
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.261-268
    • /
    • 2010
  • Phase change materials based on polypropylene blended with n-eicosane were studied in this paper. In addition, this paper reviews recent studies on the preparation of shape stabilized phase change materials (SSPCM), such as SSPCM from polypropylenes and n-eicosane, their basic properties and possible applications to latent heat storage. The preparation methods used were the melting method and absorption methods. Shape stabilized PCM(SSPCM) prepared for DSC, WAXD, FTIR spectroscopy, ARES, results of the analysis of shape stability heat capacity to improve were identified.