• Title/Summary/Keyword: shape prior knowledge

Search Result 25, Processing Time 0.029 seconds

SEGMENTATION WITH SHAPE PRIOR USING GLOBAL AND LOCAL IMAGE FITTING ENERGY

  • Terbish, Dultuya;Kang, Myungjoo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.225-244
    • /
    • 2014
  • In this work, we discuss segmentation algorithms based on the level set method that incorporates shape prior knowledge. Fundamental segmentation models fail to segment desirable objects from a background when the objects are occluded by others or missing parts of their whole. To overcome these difficulties, we incorporate shape prior knowledge into a new segmentation energy that, uses global and local image information to construct the energy functional. This method improves upon other methods found in the literature and segments images with intensity inhomogeneity, even when images have missing or misleading information due to occlusions, noise, or low-contrast. We consider the case when the shape prior is placed exactly at the locations of the desired objects and the case when the shape prior is placed at arbitrary locations. We test our methods on various images and compare them to other existing methods. Experimental results show that our methods are not only accurate and computationally efficient, but faster than existing methods as well.

Tracking Object of Snake based on the Refinement using 5 Point Invariant

  • Kim, Won;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.24.3-24
    • /
    • 2001
  • In cases where strong a priori knowledge about the object being analyzed is available, it can be embedded into the formulation of the snake model. When prior knowledge of shape is available for a specific application, information concerning the shape of the desired objects can be incorporated into the formulation of the snake model as an active contour model. In this paper we show Five points algorithm can be applied to design invariant energy.

  • PDF

The Effects of Prior Knowledge and Development Procedure to Teaching Materials Developed by the Pre-service Earth Science Teachers-Focused on the Teaching Materials in the Schoolyard (예비 지구과학교사들의 선행지식과 개발 절차가 교수학습 자료에 미치는 영향: 교정에 적용할 수 있는 자료를 중심으로)

  • Chung, Duk-Ho
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.140-151
    • /
    • 2011
  • This study is to search the problems of schoolyard teaching material developed by pre-service earth science teachers and the critical factors affecting material making. The 258 schoolyard teaching materials was collected from 54 pre-service earth science teachers (male: 18, female: 36) major in Earth Science Education in Jeonju, Korea. The schoolyard teaching materials was greatly influenced by making process type of it and the prior knowledge of pre-service earth science teachers. As schoolyard preference exploratory type rely on their prior knowledge to develop the schoolyard teaching materials, they made use of the limited concepts like fault in material making. But the concept preference exploratory type made use of concepts not accessible to majority of pre-service earth science teachers because they selected a concept from the earth science textbook first of all. The pre-service earth science teachers having wrong prior knowledge selected inappropriate resources, as well as fell into the error of concept connecting. The pre-service earth science teachers having right prior knowledge partly considered only shape of resources, but had a disregard for formation process of it in material making. Accordingly, we need to reflect richly Geological Field Trip and Solid Earth Science to curriculum for earth science teacher education. And we have to educate pre-service earth science teachers to create holistic concept on the geological subject matter knowledge, field based teaching and learning strategy, material making process.

Level Set based Respiration Rate Estimation using Depth Camera (레벨 셋 기반의 깊이 카메라를 이용한 호흡수 측정)

  • Oh, Kyeong Taek;Shin, Cheung Soo;Kim, Jeongmin;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1491-1501
    • /
    • 2017
  • In this paper, we propose a method to measure respiration rate by dividing the respiration related region in depth image using level set method. In the conventional method, the respiration related region was separated using the pre-defined region designated by the user. We separate the respiration related region using level set method combining shape prior knowledge. Median filter and clipping are performed as a preprocessing method for noise reduction in the depth image. As a feasibility test, respiration activity was recorded using depth camera in various environments with arm movements or body movements during breathing. Respiration activity was also measured simultaneously using a chest belt to verify the accuracy of calculated respiration rate. Experimental results show that our proposed method shows good performance for respiration rate estimation in various situation compared with the conventional method.

Implementation of 2D Active Shape Model-based Segmentation on Hippocampus

  • Izmantoko, Yonny S.;Yoon, Ho-Sung;Adiya, Enkhbolor;Mun, Chi-Woong;Huh, Young;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Hippocampus is an important part of brain which is related with early memory storage and spatial navigation. By observing the anatomy of hippocampus, some brain diseases effecting human memory (e.g. Alzheimer, schizophrenia, etc.) can be diagnosed and predicted earlier. The diagnosis process is highly related with hippocampus segmentation. In this paper, hippocampus segmentation using Active Shape Model, which not only works based on image intensity, but also by using prior knowledge of hippocampus shape and intensity from the training images, is proposed. The results show that ASM is applicable in segmenting hippocampus from whole brain MR image. It also shows that adding more images in the training set results in better accuracy of hippocampus segmentation.

Shape and location estimation using prior information obtained from the modified Newton-Raphson method

  • Jeon, H.J.;Kim, J.H.;Choi, B.Y.;Kim, M.C.;Kim, S.;Lee, Y.J.;Kim, K.Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.570-574
    • /
    • 2003
  • In most boundary estimation algorithms estimation in EIT (Electrical Impedance Tomography), anomaly boundaries can be expressed with Fourier series and the unknown coefficients are estimated with proper inverse algorithms. Furthermore, the number of anomalies is assumed to be available a priori. The prior knowledge on the number of anomalies may be unavailable in some cases, and we need to determine the number of anomalies with other methods. This paper presents an algorithm for the boundary estimation in EIT (Electrical Impedance Tomography) using the prior information from the conventional Newton-Raphson method. Although Newton-Raphson method generates so poor spatial resolution that the anomaly boundaries are hardly reconstructed, even after a few iterations it can give general feature of the object to be imaged such as the number of anomalies, their sizes and locations, as long as the anomalies are big enough. Some numerical experiments indicate that the Newton-Raphson method can be used as a good predictor of the unknown boundaries and the proposed boundary discrimination algorithm has a good performance.

  • PDF

A Simple Parameterization for the Rising Velocity of Bubbles in a Liquid Pool

  • Park, Sung Hoon;Park, Changhwan;Lee, JinYong;Lee, Byungchul
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.692-699
    • /
    • 2017
  • The determination of the shape and rising velocity of gas bubbles in a liquid pool is of great importance in analyzing the radioactive aerosol emissions from nuclear power plant accidents in terms of the fission product release rate and the pool scrubbing efficiency of radioactive aerosols. This article suggests a simple parameterization for the gas bubble rising velocity as a function of the volume-equivalent bubble diameter; this parameterization does not require prior knowledge of bubble shape. This is more convenient than previously suggested parameterizations because it is given as a single explicit formula. It is also shown that a bubble shape diagram, which is very similar to the Grace's diagram, can be easily generated using the parameterization suggested in this article. Furthermore, the boundaries among the three bubble shape regimes in the $E_o-R_e$ plane and the condition for the bypass of the spheroidal regime can be delineated directly from the parameterization formula. Therefore, the parameterization suggested in this article appears to be useful not only in easily determining the bubble rising velocity (e.g., in postulated severe accident analysis codes) but also in understanding the trend of bubble shape change due to bubble growth.

Robust Face Detection Based on Knowledge-Directed Specification of Bottom-Up Saliency

  • Lee, Yu-Bu;Lee, Suk-Han
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.600-610
    • /
    • 2011
  • This paper presents a novel approach to face detection by localizing faces as the goal-specific saliencies in a scene, using the framework of selective visual attention of a human with a particular goal in mind. The proposed approach aims at achieving human-like robustness as well as efficiency in face detection under large scene variations. The key is to establish how the specific knowledge relevant to the goal interacts with the bottom-up process of external visual stimuli for saliency detection. We propose a direct incorporation of the goal-related knowledge into the specification and/or modification of the internal process of a general bottom-up saliency detection framework. More specifically, prior knowledge of the human face, such as its size, skin color, and shape, is directly set to the window size and color signature for computing the center of difference, as well as to modify the importance weight, as a means of transforming into a goal-specific saliency detection. The experimental evaluation shows that the proposed method reaches a detection rate of 93.4% with a false positive rate of 7.1%, indicating the robustness against a wide variation of scale and rotation.

Fully automatic Segmentation of Knee Cartilage on 3D MR images based on Knowledge of Shape and Intensity per Patch (3차원 자기공명영상에서 패치 단위 형상 및 밝기 정보에 기반한 연골 자동 영역화 기법)

  • Park, Sang-Hyun;Lee, Soo-Chan;Shim, Hack-Joon;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.75-81
    • /
    • 2010
  • The segmentation of cartilage is crucial for the diagnose and treatment of osteoarthritis (OA), and has mostly been done manually by an expert, requiring a considerable amount of time and effort due to the thin shape and vague boundaries of the cartilage in MR (magnetic resonance) images. In this paper, we propose a fully automatic method to segment cartilage in a knee joint on MR images. The proposed method is based on a small number of manually segmented images as the training set and comprised of an initial per patch segmentation process and a global refinement process on the cumulative per patch results. Each patch for per patch segmentation is positioned by classifying the bone-cartilage interface on the pre-segmented bone surface. Next, the shape and intensity priors are constructed for each patch based on information extracted from reference patches in the training set. The ratio of influence between the shape and intensity priors is adaptively determined per patch. Each patch is segmented by graph cuts, where energy is defined based on constructed priors. Finally, global refinement is conducted on the global cartilage using the results of per patch segmentation as the shape prior. Experimental evaluation shows that the proposed framework provide accurate and clinically useful segmentation results.

The Comparative Study based on Gompertz Software Reliability Model of Shape Parameter (곰페르츠형 형상모수에 근거한 소프트웨어 신뢰성모형에 대한 비교연구)

  • Shin, Hyun Cheul;Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.29-36
    • /
    • 2014
  • Finite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, proposes the Gompertz distribution reliability model, which made out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on mean square error (MSE) and coefficient of determination$(R^2)$, for the sake of efficient model, was employed. Analysis of failure using real data set for the sake of proposing fixed shape parameter of the Gompertz distribution was employed. This analysis of failure data compared with the Gompertz distribution model of shape parameter. In order to insurance for the reliability of data, Laplace trend test was employed. In this study, the proposed Gompertz model is more efficient in terms of reliability in this area. Thus, Gompertz model can also be used as an alternative model. From this paper, software developers have to consider the growth model by prior knowledge of the software to identify failure modes which can was helped.