• Title/Summary/Keyword: shape memory alloy actuator

Search Result 116, Processing Time 0.024 seconds

Modified sigmoid based model and experimental analysis of shape memory alloy spring as variable stiffness actuator

  • Sul, Bhagoji B.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.361-377
    • /
    • 2019
  • The stiffness of shape memory alloy (SMA) spring while in actuation is represented by an empirical model that is derived from the logistic differential equation. This model correlates the stiffness to the alloy temperature and the functionality of SMA spring as active variable stiffness actuator (VSA) is analyzed based on factors that are the input conditions (activation current, duty cycle and excitation frequency) and operating conditions (pre-stress and mechanical connection). The model parameters are estimated by adopting the nonlinear least square method, henceforth, the model is validated experimentally. The average correlation factor of 0.95 between the model response and experimental results validates the proposed model. In furtherance, the justification is augmented from the comparison with existing stiffness models (logistic curve model and polynomial model). The important distinction from several observations regarding the comparison of the model prediction with the experimental states that it is more superior, flexible and adaptable than the existing. The nature of stiffness variation in the SMA spring is assessed also from the Dynamic Mechanical Thermal Analysis (DMTA), which as well proves the proposal. This model advances the ability to use SMA integrated mechanism for enhanced variable stiffness actuation. The investigation proves that the stiffness of SMA spring may be altered under controlled conditions.

The Machining Characteristics of Groove Patterning for Nitinol Shape Memory Alloy Using Electrochemical Machining (전해가공을 이용한 Nitinol 형상기억합금의 그루브 패턴 가공특성에 관한 연구)

  • Shin, Tae-Hee;Kim, Baek-Kyoum;Baek, Seung-Yub;Lee, Eun-Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.551-557
    • /
    • 2009
  • A development of smart materials is becoming a prominent issue on present industries. A smart material, included in functions, is needed for micro fabrication. A shape memory alloy(SMA) in a smart material is best known material. Ni-Ti alloy, composed of nikel and titanium is one of the best shape memory alloy(SMA). Nitinol SMA is used for a lot of high tech industry such as aero space, medical device, micro actuator, sensor system. However, Ni-Ti SMA is difficult to process to make a shape and fabrications as traditional machining process. Because nitinol SMA, that is contained nikel content more than titanium content, has similar physical characteristics of titanium. In this paper, the characteristics of ECM grooving process for nitinol SMA are investigated by experiments. The experiments in this study are progressed for power, gap distance and machining time. The characteristics are found each part. Fine shape in work piece can be found on conditions; current 6A, duty factor 50%, gap distance 15%, gap distance $15{\mu}m$, machining time 10min.

  • PDF

A Study on the Mechanism of the Robot Hand based on the Segment Binary Control (구간분할 바이너리 제어기반 로봇핸드의 메커니즘에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1232-1235
    • /
    • 2005
  • In recent years, as the robot technology is developed the researches on the artificial muscle actuator that enable robot to move dextrously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electroactive polymer. These actuators have the higher energy density than the electromechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper the segmented binary control for reducing the hysteresis of SMA is proposed and the simulation of anthropomorphic robotic hand is performed using ADAMS.

  • PDF

Fabrication of Bending Actuator for Micro Active Catheter (초소형 작동형 내시경용 Bending 액츄에이터의 제작)

  • Lee, Kwang-Ho;Lee, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.615-617
    • /
    • 1997
  • This paper reports experimental results on the fabrication and analysis of millimeter-sized bending actuators for active catheter by use of the shape memory alloy spring and the flexible beam. The major components of micro actuator are shape memory alloy spring, stainless steel strip and two acryl links. The micro actuator with the diameter of 2.0 mm and the length of 25 mm has been fabricated and characterized for the possible application to the micro active catheters. The measured maximum angle is $60^{\circ}$ and the response time is 5 sec.

  • PDF

A study on Dynamic Characteristics of the Robot Hand Using the Segmented Binary Control (구간분할 바이너리 제어를 이용한 로봇핸드의 동특성에 관한 연구)

  • Jeong Sanghwa;Cha Kyoungrae;Kim Hyunuk;Choi Sukbong;Kim Gwangho;Park Juneho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.144-149
    • /
    • 2005
  • In recent years, as the robot technology is developed the researches on the artificial muscle actuator that enable robot to move dextrously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electroactive polymer. These actuators have the higher energy density than the electromechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper the segmented binary control for reducing the hysteresis of SMA is proposed and the simulation of anthropomorphic robotic hand is performed using ADAMS.

  • PDF

A Study on the Dynamic Characteristics of Robot Hand based on Segmented Control (구간분할 제어를 이용한 로봇핸드의 동특성에 관한 연구)

  • Jeong S.H.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.310-313
    • /
    • 2005
  • In recent years, as the robot technology is developed, the researches on the artificial muscle actuator that enable robot to move dexterously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electro-active polymer. These actuators have the higher energy density than the electro-mechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper, the simulation of anthropomophic robotic hand is performed using ADAMS and the segmented binary control for reducing the hysteresis of SMA is proposed. SMA is controlled by thermo-electric module. The relations between the force and the hysteresis are developed to verify the validity of the suggested method.

  • PDF

Thermomechanical Behaviors of Shape Memory Alloy Thin Films and Their Application

  • Roh, Jin-Ho;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.91-98
    • /
    • 2006
  • The thermomechanical behaviors of SMA thin film actuator and their application are investigated. The numerical algorithm of the 2-D SMA thermomechanical constitutive equation is developed and implemented into the ABAQUS finite element program by using the user defined material (UMAT) subroutine. To verify the numerical algorithm of SMAs, the results are compared with experimental data. For the application of SMA thin film actuator, the methodology to maintain the precise configuration of inflatable membrane structure is demonstrated.

Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators

  • Song, Gangbing;Ma, Ning;Li, Luyu;Penney, Nick;Barr, Todd;Lee, Ho-Jun;Arnold, Steve
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • It has been shown in the literature that active adjustment of the intake area of a jet engine has potential to improve its fuel efficiency. This paper presents the design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators. The Nitinol SMA material is used in this research due to its advantages of high power-to-weight ratio and electrical resistive actuation. The Nitinol SMA material can be fabricated into a variety of shapes, such as strips, foils, rods and wires. In this paper, SMA wires are used due to its ability to generate a large strain: up to 6% for repeated operations. The proposed proof-of-concept engine intake employs overlapping leaves in a concentric configuration. Each leaf is mounted on a supporting bar than can rotate. The supporting bars are actuated by an SMA wire actuator in a ring configuration. Electrical resistive heating is used to actuate the SMA wire actuator and rotate the supporting bars. To enable feedback control, a laser range sensor is used to detect the movement of a leaf and therefore the radius of the intake area. Due to the hysteresis, an inherent nonlinear phenomenon associated with SMAs, a nonlinear robust controller is used to control the SMA actuators. The control design uses the sliding-mode approach and can compensate the nonlinearities associated with the SMA actuator. A proof-of-concept model is fabricated and its feedback control experiments show that the intake area can be precisely controlled using the SMA wire actuator and has the ability to reduce the area up to 25%. The experiments demonstrate the feasibility of engine intake area control using an SMA wire actuator under the proposed design.

A study on the Improvement of the Performance of Biodirectional NITINOL Actuator (NITINOL을 이용한 차동식 액츄에이터의 동작성능 향상을 위한 연구)

  • Jung, Sang-Hwa;Kim, Hyun-Wook;Cha, Kyung-Rae;Song, Seok;Shin, Byung-Soo;Lee, Kyung-Hyung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1577-1580
    • /
    • 2003
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidirectional actuator was fabricated and experimented for its performance.

  • PDF