• 제목/요약/키워드: shape memory alloy(SMA)

검색결과 296건 처리시간 0.023초

2차원 형상 제시를 위한 SMA에 기반한 와이어프레임 구조의 개발 (Development of SMA-based Wireframe Structure for 2D Shape Display)

  • 추용주;송재복
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.82-88
    • /
    • 2008
  • This paper proposes a novel method of 2 dimensional shape display. Shape displays allow us to feel tile actual volume of the object, unlike conventional 2D visual displays of 3D objects. The proposed method employs a wireframe structure to present 2D or 3D objects. The wireframe is composed of small units driven by shape memory alloy (SMA) actuators. The drive unit is analogous to the agonist-antagonist system of animal musculoskeletal systems, where the SMA actuators serve as agonist and antagonist muscles. The force in the SMA actuator is controlled by electrical current. The drive unit is equipped with the locking mechanism so that it can sustain the external force exerted by the user as well as the own weight of the wireframe structure. By controlling the current into the SMA actuator and locking mechanism, we can control the angle of the drive unit. A chain of drive units enables presentation of 2 dimensional objects. 3 dimensional presentations are possible by collecting the chains of drive units.

형상기억합금을 이용한 분리장치의 모델 및 모사에 관한 연구 (Modeling and Simulation of a Shape Memory Release Device)

  • 이응조
    • 한국추진공학회지
    • /
    • 제10권3호
    • /
    • pp.99-108
    • /
    • 2006
  • 본 논문은 기존 파이로 부품인 폭발볼트의 기능을 그대로 유지하면서 분리시 발생되는 파편 및 충격파의 악 작용과 파편을 완벽히 제거할 수 있게 형상기억합금(Shape Memory Alloy)을 이용한 분리장치(Fangibolt) 모델의 설계 및 모사에 관한 연구이다. Frangibolt는 기존 폭발볼트에서 사용하는 분리화약을 사용하지 않고 스마트 소재인 형상기억합금의 온도에 따라 변화되는 미세조직에 따른 응력생성을 이용하여 파이로 장치를 분리시키는 Non Pyrotechnic 장치로써, 실제 Frangibolt노치부에 생성되는 응력의 분포 및 분리거동을 해석함으로써 Frangibolt 설계에 필요한 인자를 파악할 수 있었다. 또한 볼트 설계방법의 최적화를 제시함으로써 향후 다른 종류의 SMA을 이용한분리장치 설계 및 해석 모델에 기초자료를 제공할 수 있을 것이다.

형상기억합금 응용 스마트 액추에이터-제어기 설계 (Smart Actuator-Control System Design Using Shape Memory Alloys)

  • 김영식;장태수
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권7호
    • /
    • pp.1451-1456
    • /
    • 2017
  • 본 연구에서는 형상기억합금(SMA)을 응용한 스마트 액추에이터의 효율적 제어를 위한 통합 액추에이터-제어기 시스템 설계를 논의한다. 이를 위하여 두 개의 스마트 SMA 액추에이터 유닛과 함께 제어를 위한 싱글 칩 마이크로프로세서, 액추에이터 드라이버, 센서를 통합한 새로운 액추에이터-제어기 모듈을 설계하고 제작하였다. 제안된 시스템에서는 피드백 제어를 위해 모듈의 회전을 측정하는 6축 모션센서 칩과 SMA의 저항을 측정하는 회로를 포함한다. 실험을 통하여 액추에이터의 구동과 센서 신호와 통신을 확인하였고 이를 통하여 실제 액추에이터-제어기 시스템의 작동을 확인하였다.

Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators

  • Song, Gangbing;Ma, Ning;Li, Luyu;Penney, Nick;Barr, Todd;Lee, Ho-Jun;Arnold, Steve
    • Smart Structures and Systems
    • /
    • 제7권1호
    • /
    • pp.1-13
    • /
    • 2011
  • It has been shown in the literature that active adjustment of the intake area of a jet engine has potential to improve its fuel efficiency. This paper presents the design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators. The Nitinol SMA material is used in this research due to its advantages of high power-to-weight ratio and electrical resistive actuation. The Nitinol SMA material can be fabricated into a variety of shapes, such as strips, foils, rods and wires. In this paper, SMA wires are used due to its ability to generate a large strain: up to 6% for repeated operations. The proposed proof-of-concept engine intake employs overlapping leaves in a concentric configuration. Each leaf is mounted on a supporting bar than can rotate. The supporting bars are actuated by an SMA wire actuator in a ring configuration. Electrical resistive heating is used to actuate the SMA wire actuator and rotate the supporting bars. To enable feedback control, a laser range sensor is used to detect the movement of a leaf and therefore the radius of the intake area. Due to the hysteresis, an inherent nonlinear phenomenon associated with SMAs, a nonlinear robust controller is used to control the SMA actuators. The control design uses the sliding-mode approach and can compensate the nonlinearities associated with the SMA actuator. A proof-of-concept model is fabricated and its feedback control experiments show that the intake area can be precisely controlled using the SMA wire actuator and has the ability to reduce the area up to 25%. The experiments demonstrate the feasibility of engine intake area control using an SMA wire actuator under the proposed design.

초소형 내시경 작동기의 개발과 제어에 관한 연구 (A Study on Development and Control of Micro Active Catheter Actuator)

  • 이장무;김종현;이상원;박준형
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.15-22
    • /
    • 1999
  • This paper demonstrates the feasibility of Shape Memory Alloy (SMA) actuators in controlling the motion of micro active catheter. The dynamic behavior of SMA is obtained by several experiments for the design of the controller. With the control parameters obtained in experiments, temperature feedback control algorithm is proposed and realized. The prototype of micro active catheter is fabricated, and its control performance which uses the designed controller is investigated. The results obtained show the potential of the SMA as viable means for actuating the micro active catheter.

  • PDF

Testing and modelling of shape memory alloy plates for energy dissipators

  • Heresi, Pablo;Herrera, Ricardo A.;Moroni, Maria O.
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.883-900
    • /
    • 2014
  • Shape memory alloys (SMA) can dissipate energy through hysteresis cycles without significant residual deformation. This paper describes the fabrication and testing of copper-based SMA hourglass-shaped plates for use in energy dissipation devices and the development of a numerical model to reproduce the experiments. The plates were tested under cyclic flexural deformations, showing stable hysteresis cycles without strength degradation. A detailed nonlinear numerical model was developed and validated with the experimental data, using as input the constitutive relationship for the material determined from cyclic tests of material coupons under tension loading. The model adequately reproduces the experimental results. The study is focused on the exploitation of SMA in the martensite phase.

Experimental and numerical studies toward the implementation of shape memory alloy ties in masonry structures

  • Casciati, Sara;Hamdaoui, Karim
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.153-169
    • /
    • 2008
  • The use of pre-tensioned shape memory alloy (SMA) wires to retrofit historic masonry structures is investigated. A small wall, serving as a prototype masonry specimen, is constructed to undergo a series of shaking-table tests. It is first studied in its original state, and its dynamic characteristics (in terms of modal frequencies) are extracted from the recorded signals. The results are then compared with those obtained when an increasing number of couples of pre-stressed SMA wires are introduced in the specimen to link the bricks together. A three-dimensional finite element model of the specimen is developed and calibrated according to the modal parameters identified from each experimental test (with and without SMA wires). The calibration process is conducted by enhancing the masonry mechanical behaviour. The results and the effectiveness of the approach are presented.

Dynamic behavior of a seven century historical monument reinforced by shape memory alloy wires

  • Hamdaoui, Karim;Benadla, Zahira;Chitaoui, Houssameddine;Benallal, Mohammed Elamine
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.337-345
    • /
    • 2019
  • This work resumes a research that proposes the use of the technique based on the dissipation energy of the shape memory alloy (SMA) ties. It focuses principally on the assessment of the effectiveness of the use of these smart materials on displacements, accelerations and the stresses of the minaret of the great mosque of Ajloun in Jordan. The 3-D finite element model of the minaret is performed by the ANSYS software. First of all, the proposed model is calibrated and validated according to the experimental results gathered from ambient vibration testing results. Then, a nonlinear transient analysis is considered, when the El-Centro earthquake is used as the input signal. Different simulating cases concerning the location, number and type of SMA devices are proposed in order to see their influence on the seismic response of the minaret. Hence, the results confirm the effectiveness of the proposed SMA device.

Ni-Ti SMA의 미세 전해가공특성과 형상기억효과 (Micro Electrochemical Machining Characteristics and Shape Memory Effect in Ni-Ti SMA)

  • 김동환;박규열
    • 한국정밀공학회지
    • /
    • 제20권1호
    • /
    • pp.43-49
    • /
    • 2003
  • In this study, micro electrochemical machining method was introduced for accomplishment the fabrication technology of functional parts and smart structures using the Ni-Ti shape memory alloy. From the experimental result, the micro part which has very fine surface could be achieved by use of micro electrochemical process with point electrode method. Concretely, the optimal performance of micro electrochemical process in Ni-Ti SMA was obtained at the condition of approximately 100% of current efficiency and high frequency pulse current. That is, much finer surface integrity and shape memory effect can be obtained at the same condition mentioned above.

A finite element analysis of a new design of a biomimetic shape memory alloy artificial muscle

  • Jaber, Moez Ben;Trojette, Mohamed A.;Najar, Fehmi
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.479-496
    • /
    • 2015
  • In this work, a novel artificial circular muscle based on shape memory alloy (S.M.A.) is proposed. The design is inspired from the natural circular muscles found in certain organs of the human body such as the small intestine. The heating of the prestrained SMA artificial muscle will induce its contraction. In order to measure the mechanical work provided in this case, the muscle will be mounted on a silicone rubber cylindrical tube prior to heating. After cooling, the reaction of the rubber tube will involve the return of the muscle to its prestrained state. A finite element model of the new SMA artificial muscle was built using the software "ABAQUS". The SMA thermomechanical behavior law was implemented using the user subroutine "UMAT". The numerical results of the finite element analysis of the SMA muscle are presented to shown that the proposed design is able to mimic the behavior of a natural circular muscle.