• Title/Summary/Keyword: shallow subsurface

Search Result 117, Processing Time 0.029 seconds

Effect of subsurface flow and soil depth on shallow landslide prediction

  • Kim, Minseok;Jung, Kwansue;Son, Minwoo;Jeong, Anchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.281-281
    • /
    • 2015
  • Shallow landslide often occurs in areas of this topography where subsurface soil water flow paths give rise to excess pore-water pressures downslope. Recent hillslope hydrology studies have shown that subsurface topography has a strong impact in controlling the connectivity of saturated areas at the soil-bedrock interface. In this study, the physically based SHALSTAB model was used to evaluate the effects of three soil thicknesses (i.e. average soil layer, soil thickness to weathered soil and soil thickness to bedrock soil layer) and subsurface flow reflecting three soil thicknesses on shallow landslide prediction accuracy. Three digital elevation models (DEMs; i.e. ground surface, weathered surface and bedrock surface) and three soil thicknesses (average soil thickness, soil thickness to weathered rock and soil thickness to bedrock) at a small hillslope site in Jinbu, Kangwon Prefecture, eastern part of the Korean Peninsula, were considered. Each prediction result simulated with the SHALSTAB model was evaluated by receiver operating characteristic (ROC) analysis for modelling accuracy. The results of the ROC analysis for shallow landslide prediction using the ground surface DEM (GSTO), the weathered surface DEM and the bedrock surface DEM (BSTO) indicated that the prediction accuracy was higher using flow accumulation by the BSTO and weathered soil thickness compared to results. These results imply that 1) the effect of subsurface flow by BSTO on shallow landslide prediction especially could be larger than the effects of topography by GSTO, and 2) the effect of weathered soil thickness could be larger than the effects of average soil thickness and bedrock soil thickness on shallow landslide prediction. Therefore, we suggest that using BSTO dem and weathered soil layer can improve the accuracy of shallow landslide prediction, which should contribute to more accurately predicting shallow landslides.

  • PDF

Application of a Physically Based Model to Shallow landsliding (천층(淺層) 산사태(山沙汰) 발생에서의 물리 모델의 적용)

  • Kim, Je-Su;Kim, Nam-Choon;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.1
    • /
    • pp.62-69
    • /
    • 2000
  • Topography influences shallow landslide initiation through both concentration of subsurface flow and the gradient on slope stability. A model for the topographic influence on shallow landslide initiation developed by Mongomerry et al (1994) is applied to 24 places with similar terrain and subsurface flow. The criterion of landslide prone areas developed by Korea Forestry Administration (1998) is likely to misinterpreted under the condition of heavy rainfall. Soil saturation can be predicted by this model. This relative soil saturation can be used to analyze the stability of each topographic point in the case of cohesionless soils with spatially constant thickness and saturated conductivity. The three different stages of steady state rainfall predicting to cause instability in each topographic points provide a good measure of shallow landsliding possibility.

  • PDF

Geophysical Surveys for Investigating the Groundwater Environment of the Chojeong, Chungbuk (충북 초정지역의 지하수환경 조사를 위한 지표지구물리탐사)

  • 김지수;한수형;김경호;신재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.103-106
    • /
    • 2000
  • Geophysical data sets from the Chojeong area in the Chungbuk-Do are compositely studied in terms of multi-attribute interpretation for the subsurface mapping of shallow fracture zones, associated with groundwater reservoir. Utilizing a GIS software, the attribute data are implemented to a database; a lineament from the satellite image, electrical resistivities and its standard deviation, radioactivity, seismic velocity, bedrock depth from exploration data. In an attempt to interpret 1-D electrical sounding data in 2-D and 3-D views, 2-D resistivities structures are firstly made by interpolating 1-D plots. Reconstruction of a resistivity volume is found to be an effective scheme for subsurface mapping of shallow fracture zones. Shallow fracture zones in the southeastern part of the study area are commonly correlated in the various exploration data.

  • PDF

Investigation of Subsurface Deformations for the Shallow Tunnel In A Granular Mass Using Two-Dimensional Laboratory Model Test and Numerical Analysis (2차원 실내모형실험과 수치해석을 이용한 사질토 지반의 얕은 터널에 대한 지중변형에 대한 규명)

  • Lee, Yong-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.219-228
    • /
    • 2006
  • In urban areas, tunnelling induced ground deformations, particularly ground settlements should be considered in order to minimize the damage of adjacent structures. Therefore, an appropriate monitoring system for the tunnel construction should be setup at the planning or design stage. A number of studies on ground settlements due to tunnelling in soft ground have been carried out so far. However, most studies have focused on clay soil rather than sand soil. In particular, a few studies on behaviour of subsurface deformations in granular material have been reported. In this study, two-dimensional laboratory model test with aluminium rods regarded as continuum granular material and close range photogrammetric technique, and numerical analysis were carried out in order to identify the behaviour of subsurface deformations due to shallow tunnelling. Direction and magnitude of displacement vectors from the model test was identical to the numerical analysis. In particular, the vector direction was appeared to be toward a point below the tunnel invert level. A narrow 'chimney or tulip like' pattern of vertical displacement was confirmed by both the model test and numerical analysis. This is consistent with the field data. In addition to the qualitative comparison, the quantitative comparison of subsurface settlements according to 2D volume loss showed good agreement between the model test and numerical analysis. Therefore, close range photogrammetric technique applied in the model test may be used to validate the result from the continuum numerical analysis.

  • PDF

Rainfall-induced shallow landslide prediction considering the influence of 1D and 3D subsurface flows

  • Viet, Tran The;Lee, Giha;An, Hyunuk;Kim, Minseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.260-260
    • /
    • 2017
  • This study aims to compare the performance of TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope-stability model) and TiVaSS (Time-variant Slope Stability model) in the prediction of rainfall-induced shallow landslides. TRIGRS employs one-dimensional (1-D) subsurface flow to simulate the infiltration rate, whereas a three-dimensional (3-D) model is utilized in TiVaSS. The former has been widely used in landslide modeling, while the latter was developed only recently. Both programs are used for the spatiotemporal prediction of shallow landslides caused by rainfall. The present study uses the July 2011 landslide event that occurred in Mt. Umyeon, Seoul, Korea, for validation. The performance of the two programs is evaluated by comparison with data of the actual landslides in both location and timing by using a landslide ratio for each factor of safety class ( index), which was developed for addressing point-like landslide locations. In addition, the influence of surface flow on landslide initiation is assessed. The results show that the shallow landslides predicted by the two models have characteristics that are highly consistent with those of the observed sliding sites, although the performance of TiVaSS is slightly better. Overland flow affects the buildup of the pressure head and reduces the slope stability, although this influence was not significant in this case. A slight increase in the predicted unstable area from 19.30% to 19.93% was recorded when the overland flow was considered. It is concluded that both models are suitable for application in the study area. However, although it is a well-established model requiring less input data and shorter run times, TRIGRS produces less accurate results.

  • PDF

Comparison of Shallow Model Tunnel Test Using Image Processing and Numerical Analysis (이미지 프로세싱을 이용한 얕은 터널 모형실험과 수치해석의 비교)

  • Lee, Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2006
  • In this study, 2D shallow tunnel model test using close range photogrammetric technique was conducted with aluminium rods simulating continuum granular material. Numerical analysis was also carried out in order to identify the behaviour of subsurface deformations caused by shallow tunnelling. Direction and magnitude of displacement vectors from the model test were identical to the result of numerical analysis based on the model data. In particular, it is shown that the vector direction was toward a point below the tunnel invert level. A narrow "chimney or tulip like" pattern of vertical displacement was confirmed by both the model test and numerical analysis. This behaviour is consistent with the field data. In addition to the qualitative comparison, the quantitative result of subsurface settlements according to 2D volume loss showed good agreement between the model test and numerical analysis. Therefore, close range photogrammetric technique applied in the model test may be used to validate the result from the continuum numerical analysis.

Numerical Simulation for the Subsurface Temperature Distribution Disturbed by Heat-Pump Operation (지열펌프 구동에 의한 지중 온도 분포 변화 모델링 연구)

  • Shin, Ji-Youn;Bae, Gwang-Ok;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.40-43
    • /
    • 2006
  • Public demand for the heat pump system as a next generation energy equipment is increasing for its eco-friendly and cost-effective advantage. Many researches have been concentrated on how to calculate and develop its own efficiency, while the possible effect of the heat pump operation on the whole subsurface temperature distribution is relatively less considered, During the current study, subsurface temperature disturbance caused by seasonal surface temperature cycle in Busan area and general W-tube heat pump operation is simulated in 3-dimensional heterogeneous medium. It shows that subsurface deeper than 10m from the surface remains nearly unchanged throughout the 4 seasons and groundwater convect ion in highly permeable layer near the surface acts like a main path of heat plume from heat pump system, This implies the significance of detail descript ion in shallow sedimentary layer or highly permeable layer which plays an important role on the regional flow advection and heat transfer. Also, the effect of groundwater convection increases when the arrangement of the 2 injection pipes and 2 extract ion well is maintained parallel to groundwater flow. Therefore, more careful and detail investigation is required before installation and operation of heat pump system that it may not cause any possible change of microbial ecosystem in the shallow subsurface environment or 'contamination of temperature' for groundwater use as well as the loss of efficiency of the equipment itself. This can also help to design the optimized grouting system for heat pump.

  • PDF

Hydrochemical and Isotopic Properties of the Thermal Spring Water from Chonju Jukrim District, Korea (전주 죽림지역 온천수의 화학적 및 동위원소적 특성)

  • Na, Choon-Ki;Lee, Mu-Seong;Lee, In-Sung;Park, Hee-Youl;Kim, Oak-Bae
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 1997
  • The purpose of this study is to examine the feasibility of using stable isotopes as a hydrologic tracer, and to elucidate the groundwater circulation system and the source of S component dissolved in thermal water of the Chonju Jukrim thermal spring district based on the O, H and S isotopic variabilities of environmental materials including bedrock, rainwater, surface water, shallow subsurface water and thermal spring water. The ${\delta}^{18}O$ and ${\delta}D$ of subsurface waters and surface water show highly restricted range and plotted on the same meteoric water line as a ${\delta}D=8{\delta}^{18}O+19$ line, and derivate from the mean annual isotopic composition of the rain water but are analogous to those of rain waters precipitated during winter season, indicating that ground waters are originated from the meteoric water and are strongly affected by the seasonal variation of air mass. Thermal spring waters are more depleted in ${\delta}^{18}O$ and ${\delta}D$ than those of shallow ground water and surface water. It can be explained by the difference of recharge area. The hydrochemical properties of subsurface waters and surface water devide into two groups: $Ca(HCO_3)_2$ type including shallow subsurface water and surface water, and $Na(HCO_3)$ type of thermal spring waters. The ${\delta}^{34}S$ values of thermal spring water show very high positive and quitely distinct from those of shallow subsurface water and surface water that are similar to those of bed rocks, indicating that sulfate dissolved in thermal spring water has not only a terrigenic origin, but also originates partially from the foreign source containing very heavy ${\delta}^{34}S$ component such as an ancient sea water. However, the presence of $H_2S$ can not be ignore the affact of the isotopic fractionation to explaine the heavy ${\delta}^{34}S$ of thermal spring water. Overall, the Oxygen and Hydrogen stable isotopes can identify the source and the circulation system of the natural waters and the S-isotopes can provide a crucial clue on tracing the dissolved material transports in the circulation system of the natural water.

  • PDF

Water bottom seismic refraction survey for engineering applications

  • Cha Young Ho;Jo Churl-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.449-454
    • /
    • 2003
  • The accurate mapping of the basement is one of the most crucial factors in construction of harbour facilities and bridges in the coastal areas. In shallow waters, the seismic reflection method often fails to image the basement geometry beneath the sediment cover in many cases. We present the result of a shallow marine seismic refraction survey using two ships, l2-channel hydrophone arrays deployed on the bottom and a borehole sparker or percussion powder as sources. Velocity structure could be computed by tomography algorithm since more than 6 different source points had been applied for one spread. The comparison of the results of the refraction survey with drilling logs demonstrates remarkable consistency in basement geometry. It thus appears that the refraction method in this study is an efficient and cost-effective way to investigate the basement structure in coastal area, river, and lake.

  • PDF

Soft Ground Investigations Using Small Loop EM (소형루프 전자탐사법을 이용한 연약지반 조사)

  • Kim, Ki-Ju;Cho, In-Ky;Lim, Jin-Taik;Kyeung, Keu-Ha;Kim, Bong-Chan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.245-250
    • /
    • 2007
  • The small loop EM method is a fast and convenient geophysical tool which can give shallow subsurface resistivity distribution. It can be a useful alternative of resistivity method in conductive environment. We applied the multi-frequency small loop EM method for the investigation of a soft ground landfill site which was constructed on a tideland since the resistivity of the survey area is extremely low. 3D resistivity distribution was obtained by merging 1D inversion results and shallow subsurface structure can be interpreted. By comparing the result with the drilling log and measured soil resistivity sampled at 16 drill holes, we can get lot of information such as groundwater level, thickness of landfill, salinity distribution, depth to the basement and etc.

  • PDF