• Title/Summary/Keyword: shallow depth

Search Result 1,034, Processing Time 0.025 seconds

Distribution of Common Squid Todarodes pacificus Larvae in the Southwestern Part of the East Sea in Summer and Autumn, 2015 (2015년 하계 및 추계 동해 남서해역에서 출현하는 살오징어 (Todarodes pacificus) 유생의 분포 양상)

  • KIM, Yoon-Ha;SHIN, Dong-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.220-228
    • /
    • 2019
  • To determine the horizontal and temporal distribution of common squid larvae, Todarodes pacificus (hereafter T. pacificus), we conducted surveys using an IKMT net (mesh size: $500{\mu}m$) with a Fisheries Research Vessel (FRV, TAMGU 21) in the southwestern part of the East Sea in summer (August and September) and autumn (November) 2015. A total of 228 larvae, ranging in mantle length (ML) from 1.4 mm to 21.9 mm, were collected at 35 stations over the research period. The monthly average mantle length of T. pacificus larvae did not differ significantly in August, September and November. (p > 0.05). Catch densities at positive stations ranged between 0.1 and $7.9inds./1,000m^3$ over the research period. Incidence rates of T. pacificus larvae were similar over three months, in the study area (62.9 % - 68.6 %). The 4 - 5 mm mantle length range had the highest frequency in size-frequency distributions for T. pacificus larvae. The larval survival temperature ($15-24^{\circ}C$) at positive stations for catch densities was located below a 20 m depth in August whereas it was located at the surface of the water in September and November. The survival temperature for larvae existed from the bottom to the surface of the water where larvae were sampled larvae in shallow sea areas. However, the larval survival temperature occurred in a shallower location than the upper layer of the thermocline in deep sea areas at a depth below 100 m.

Analysis of the Causes of Clustered Scismicity Registered in Yeoncheon, the Middle Part of the Korean Peninsula through Gravity Field Interpretation and Modeling (중력이상 수치해석을 통한 연천지역 군발지진 원인분석)

  • Sungchan Choi;Sung-Wook Kim;Eun-Kyeong Choi;Younghong Shin;Tae-Kyung Hong
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.633-648
    • /
    • 2022
  • Gravity data were analyzed to identify the cause of clustered seismicity that occurred intensively in Yeoncheon, located in the central part of the Korean Peninsula. Our analysis suggests that the En echelon faults developed in the northwest-southeast direction. In addition, in the eastern part of the Dongducheon Fault, it was interpreted that high-density lower bedrock intermittently lifts close to the surface due to vertical tectonic movement accompanied by a flower structure. The fracture zone of the Dongducheon Fault is estimated that the width is about 200 m, the depth is at least 5 km, and the density is about 15% lower than the adjacent rocks. It is analyzed that the shallow earthquakes that occurred within 5 km depth was concentrated along the low-density En echelon fault fracture zone developed between the high-density rocks intruding close to the surface. Therefore, the earthquakes can be interpreted as the result that the north-south stress caused by the dextral tectonic movement of the Dongducheon Fault activated the En echelon fault in the northwest-southeast direction.

Numerical analysis of dam breaking problem using SPH (제체의 갑작스런 붕괴로 인한 충격파 수치해석 - SPH (Smoothed Particle Hydrodynamics)를 중심으로)

  • Cho, Yong Jun;Kim, Gweon Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.261-270
    • /
    • 2008
  • Even though there is a great deal of progress in a numerical method of high caliber like SPH, it is very rarely deployed in a water resources community. Despite the great stride in computing environment, depth averaged approach like a nonlinear shallow equation is still efficient tool for flood routing in large watershed, but it can give some misleading information like the inundation height of flood. In this rationale, we numerically simulate the flow into the dry channel, dry channel with an obstacle triggered by the collapse of a two dimensional water column using SPH (Smoothed Particle Hydrodynamics) in order to boost the application of numerical method of high caliber like SPH in a water resources community. As a most severe test of the robustness of SPH, we also carry out the simulation of the flow through a clearance into the wet channel driven by the rapid removal of a water gate. As a hydrodynamic model, we used the Navier-Stokes equation, a numerical integration of which was carried out using SPH. To verify the validity of newly proposed numerical model, we compare the numerically simulated flow with the others in the literature mainly from VOF and MAC, and hydraulic experiments by Martin and Moyce (1952), Koshizuka et al. (1995) and Janosi et al. (2004). It was shown that agreements between the numerical results in this study and hydraulic experiments are remarkable.

A Comparative Study of Microtremor HVSR from the Surface and Downhole Seismometers (지표형과 지중형 지진계의 상시미동 자료를 이용한 HVSR 비교 연구)

  • Su Young Kang;Kwang-Hee Kim
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.594-610
    • /
    • 2023
  • The horizontal-to-vertical spectral ratio (HVSR) has been widely applied to evaluate ground characteristics such as site response and thickness of the soft sedimentary layer on top of the bedrock via dominant frequencies and amplification factors of microtremors. Eight seismic stations were selected to investigate the HVSR results at the surface and at varying depths, and their variations due to wind speeds. These stations are equipped with seismic sensors on the surface and downhole(s) at depths. The borehole data analysis reveals that the geological condition at burial depth influences the HVSR results. Their dominant frequencies indicate the entire thickness of the soft layer, not the thickness to the bottom or top of the soft sedimentary layer from the seismometer burial depth. Analysis of the background noise observed at the surface showed that the resonance frequency estimation varied with wind speed changes. In the studied cases, the background noise observed in the sedimentary layer at depths of 20 to 66 meters yielded stable and consistent resonance frequency estimation regardless of wind speed fluctuations. The results of the seismic sensors buried deeper than 100 meters are unstable. The result indicates that the background noise from the buried seismometer at shallow depths (~0.3 m) under light wind conditions (wind speeds less than 3 m/s) is sufficient to achieve the purpose of the HVSR analysis.

Distribution and Change of Radon Concentration of Groundwater in the Area of Yeonpung-myeon, Goesan-gun, Korea (괴산군 연풍면 일대 지하수 중 라돈 함량 분포와 변동)

  • Byong-Wook Cho;Soo-Young Cho;Jong-Hyun Oh;Byeong-Dae Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.587-598
    • /
    • 2023
  • To assess the distribution and temporal changes in radon concentration within a region in Yeonpung-myeon, Goesan-gun, known for elevated groundwater radon levels, we conducted a series of analyses, measuring radon concentration and DTW (Depth to water table) at 2-month intervals over 12 cycles. The investigation covered 10 groundwater wells and one stream within the designated area. The groundwater in the central part of the region exhibited high radon concentrations, ranging from 37.0 to 2,675.2 Bq/L. Conversely, the peripheral zones displayed comparatively lower radon concentrations, ranging from 10.6 to 37.9 Bq/L. This variation is attributed to the presence of granite porphyry that intruded into the Okcheon Formation, forming a fracture zone and contributing to elevated radon levels in the central part. In contrast, the peripheral locations, located within the Okcheon Formation and away from the granite porphyry intrusion, demonstrated lower radon concentrations. The observed significant fluctuation in radon concentration in the central area is associated with its low-lying topography. The pronounced seasonal changes in groundwater levels contribute to the migration of shallow, low-radon groundwater into areas with higher radon concentrations, explaining the observed variations in radon levels within the central part of the studied area.

Numerical Analysis of Electrical Resistance Variation according to Geometry of Underground Structure (지하매설물의 기하학적 특성에 따른 전기저항 변화에 대한 수치 해석 연구)

  • Kim, Tae Young;Ryu, Hee Hwan;Chong, Song-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • Reckless development of the underground by rapid urbanization causes inspection delay on replacement of existing structure and installation new facilities. However, frequent accidents occur due to deviation in construction design planned by inaccurate location information of underground structure. Meanwhile, the electrical resistivity survey, knowns as non-destructive method, is based on the difference in the electric potential of electrodes to measure the electrical resistance of ground. This method is significantly advanced with multi-electrode and deep learning for analyzing strata. However, there is no study to quantitatively assess change in electrical resistance according to geometric conditions of structures. This study evaluates changes in electrical resistance through geometric parameters of electrodes and structure. Firstly, electrical resistance numerical module is developed using generalized mesh occurring minimal errors between theoretical and numerical resistance values. Then, changes in resistances are quantitatively compared on geometric parameters including burial depth, diameter of structure, and distance electrode and structure under steady current condition. The results show that higher electrical resistance is measured for shallow depth, larger size, and proximity to the electrode. Additionally, electric potential and current density distributions are analyzed to discuss the measured electrical resistance around the terminal electrode and structure.

Sensitivity Analysis Study of Geotechnical Factors for Gas Explosion Vibration in Shallow-depth Underground Hydrogen Storage Facility (저심도 지하 수소저장소에서의 가스 폭발 진동에 대한 지반공학적 인자들의 민감도 분석 연구)

  • Go, Gyu-Hyun;Woo, Hyeon‑Jae;Cao, Van-Hoa;Kim, Hee-Won;Kim, YoungSeok;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.169-178
    • /
    • 2024
  • While stable mid- to large-scale underground hydrogen storage infrastructures are needed to meet the rapidly increasing demand for hydrogen energy, evaluating the safety of explosion vibrations in adjacent buildings is becoming important because of gas explosions in underground hydrogen storage facilities. In this study, a numerical analysis of vibration safety effects on nearby building structures was performed assuming a hydrogen gas explosion disaster scenario in a low-depth underground hydrogen storage facility. A parametric study using a meta-model was conducted to predict changes in ground dynamic behavior for each combination of ground properties and to analyze sensitivity to geotechnical influencing factors. Directly above the hydrogen storage facility, the unit weight of the ground had the greatest influence on the change in ground vibration due to the explosion, whereas, farther away from the facility, the sensitivity of dynamic properties was found to be high. In addition, in evaluating the vibration stability of ground building structures based on the predicted ground vibration data and blasting vibration tolerance criteria, in the case of large reinforced concrete building structures, the ground vibration safety was guaranteed with a separation distance of about 10-30 m.

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF

Utility Evaluation on Application of Geometric Mean Depending on Depth of Kidney in Split Renal Function Test Using 99mTc-MAG3 (99mTc-MAG3를 이용한 상대적 신장 기능 평가 시 신장 깊이에 따른 기하평균 적용의 유용성 평가)

  • Lee, Eun-Byeul;Lee, Wang-Hui;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.199-208
    • /
    • 2016
  • $^{99}mTc-MAG_3$ Renal scan is a method that acquires dynamic renal scan image by using $^{99}mTc-MAG_3$ and dynamically visualizes process of radioactive agent being absorbed to kidney and excreted continuously. Once the test starts, ratio in both kidneys in 1~2.5 minutes was measured to obtain split renal function and split renal function can be expressed in ratio based on overall renal function. This study is based on compares split renal function obtained from data acquired from posterior detector, which is a conventional renal function test method, with split renal function acquired from the geometric mean of values obtained from anterior and posterior detectors, and studies utility of attenuation compensation depending on difference in geometric mean kidney depth. From July, 2015 to February 2016, 33 patients who undertook $^{99}mTc-MAG_3$ Renal scan(13 male, 20 female, average age of 44.66 with range of 5~70, average height of 160.40cm, average weight of 55.40kg) were selected as subjects. Depth of kidney was shown to be 65.82 mm at average for left and 71.62 mm at average for right. In supine position, 30 out of 33 patients showed higher ratio of deep-situated kidney and lower ratio of shallow-situated kidney. Such result is deemed to be due to correction by attenuation between deep-situated kidney and detector and in case where there is difference between the depth of both kidneys such as, lesions in or around kidney, spine malformation, and ectopic kidney, ratio of deep-situated kidney must be compensated for more accurate calculation of split renal function, when compared to the conventional test method (posterior detector counting).

Habitat Characteristics of Benthic Macroinvertebrates at a Headwater Stream in the Yeonyeopsan (Mt.) (연엽산 산지계류에 있어서 저서성 대형무척추동물의 서식특성)

  • Jang, Su-Jin;Nam, Sooyoun;Kim, Suk-Woo;Koo, Hyo-Bin;Kim, Ji-Hyeon;Lee, Youn-Tae;Chun, Kun-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.334-344
    • /
    • 2020
  • A total of 24 families, 44 species, and 658 benthic macroinvertebrates were identified, and Ecdyonurus dracon Kluge (13%) was the dominant species in forested streams within the Yeonyeopsan (Mt.). A total of four habit categories (i.e., clingers (56%), burrowers (19%), swimmers (14%), and sprawlers (56%)) were identified, and clingers were the dominant habit at all survey points except point one (UP1). Habitat characteristics were depended on the hydraulic factors (e.g., flow velocity, depth, and substrates), water quality (e.g., DO and water temperature), and the habitat characteristics were differed in the riffle, which has a faster the flow velocity, compared by in the stagnant pool. In other words, in riffles, the clingers dominated in high flow velocity with the large maximum and median grain size for substrates in the habitats regardless of depth, but the burrowers and sprawlers were dominant in low flow velocity with the small maximum and median grain size for substrates in the habitats. Moreover, DO and flow velocity were in positive correlation (y = 0.6666x - 0.659, R2 = 0.0851), and the habitat for burrowers was wider than that for sprawlers or clingers. The water depth was negatively correlated with water temperature (y = -26.397x + 283.87, R2 = 0.1802) since the water temperature is more sensitive to insolation in shallow depth. pH was positively correlated with water temperature. The investigation of the habitat characteristics by separating the relations between pH and DO in upstream and downstream showed the low pH and high DO in the upstream with a high crown density of 68%, regardless of community composition. On the other hand, high pH and low DO in the downstream with a relatively low crown density of 51%. It was considered that the riparian forest played a role in suppressing the growth of attached algae and the controlling water temperature in headwater streams. Our findings identified the habitat characteristics of benthic macroinvertebrates in a headwater stream. We expected that the finding can provide reference data for suggesting conservation and management plans in a headwater stream and increasing academic value.