• Title/Summary/Keyword: shallow depth

Search Result 1,034, Processing Time 0.025 seconds

Experimental Study on Planning Soil Depth of Green Roof System using Light-Weight Greening Block (경량식생블럭을 이용한 옥상녹화 공법의 토심계획에 관한 실험적연구)

  • Oh, Jae-Hun;Ahn, Hye-Ryeon;Kim, Kyoung-Uk;Ahn, Young-Chull;Moon, Jong-Wook
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.105-110
    • /
    • 2013
  • Green roof system is classified as intensive greening, extensive greening or mix of intensive-extensive greening. Recently, light-weigh green roof has been performed actively, because buildings have been considered loads, design and maintenance. This study was conducted to design soil depth for light-vegetation block with using bottom-ash. As a result, it was found that growth of plant had no direct effect on soil depth even it was less than 10cm. Soil depth having under 5cm could be integration of plant roots and vegetation blocks. It was also possible to grow organic vegetables through the experiment of planting. According to this experiment, as light-vegetation block with bottom-ash was used for planting, it makes design shallow soil depth. The results will help install green roof system conveniently not only new buildings but also used buildings.

implementation and its limitations

  • Nahm, Kie-B.;Shin, Eun-S.;Ryoo, Seok-M.
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.90-93
    • /
    • 1997
  • The shallow depth of focus in conventional light microscopy hinders the observation of the whole image when the object is thicker than the depth of field. Most of the existing techniques measured the object distance, which is not necessarily the actual distance of each pixel in the image. We implemented a means of determining the "best focus" of each pixel and located the height of object points by sectioning at different sample heights. Combining the height information and its gray values together, we obtained an image where the blur from the finite depth of focus is eliminated. Limitations of the technique are discussed together with composed images.ed images.

Development of Water Saving Irrigation Method Using Water Balance Model (물수지 모형을 이용한 절수관개기법 개발)

  • Sohn , Seung-Ho;Chung , Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.3-11
    • /
    • 2004
  • The objective of this study is to develop water saving irrigation method using water balance model in order to save rural water. Daily water balance components such as irrigation water, drainage water, effective rainfall, ET, and infiltration were measured in paddy fields. Model simulations were performed for different outlet heights and ponding depths. The outlet heights and the ponding depths are 2 cm, 4 cm, 6 cm, 8 cm, and 10 cm, respectively. Based on the simulation very shallow ponding depth of 2 cm with 10 cm outlet height showed the largest effective rainfall ratio and the smallest irrigation amount. Until the introduction of laser leveling dozer and automatic inlet control devices, it would be desirable to adopt 4cm ponding depth because of difficulty of land leveling and frequency of farmer's field visit. The results of this study will be applied in the paddy farming and can improve water use efficiency.

Trajectory Optimization for Underwater Gliders Considering Depth Constraints (수심 제한을 고려한 수중 글라이더 경로 최적화)

  • Yoon, Sukmin;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.560-565
    • /
    • 2014
  • In this study, the problem of trajectory optimization for underwater gliders considering depth constraints is discussed. Typically, underwater gliders are controlled to dive and climb in a saw-tooth pattern at constant gliding angles. This approach is effective and close to optimal for deep water applications. However, the optimal path deviates from the saw-tooth path in shallow water conditions. This study focuses on finding more efficient gliding paths that can minimize the traverse time in the horizontal plane when the water depth is limited. The trajectory optimization problem is formulated into a minimum time control problem with inequality path constraints and hydrodynamic drag effects. A numerical approach based on the pseudo-spectral method is adopted as a solution approach, and the simulation results are presented.

A Study on the Crack Depth Sizing Using ECT Technique for Martensitic Stainless Steel (ECT를 이용한 마르텐사이트 재질의 균열결함 깊이측정 연구)

  • Kim, Wang-Bae;Cheon, Keun-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.2
    • /
    • pp.7-12
    • /
    • 2009
  • The flaws detected by the non-destructive surface test methods shall be sized by means of the volumetric test such as an UT(ultrasonic test) or an ECT(eddy current test) for the purpose of analyzing and repairing them. It is generally known that the ECT is a comparatively effective technique for the small size cracks which are located shallowly from the surface. On this study, the ECT technique was tried to size the depth of the crack-like EDM notches, and it is identified that the ECT is an appropriate depth sizing technique for the shallow cracks less than 3mm in the Martensitic CA6NM material.

  • PDF

Inflow Patterns Around a Water Intake Tower for Selective Withdrawal Depth (선택취수 수심에 따른 취수탑 유입유동 특성)

  • Cho, Yong;Kim, Yong-Yeol
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.63-70
    • /
    • 2010
  • Shallow water withdrawal systems have been replaced with a selected withdrawal system to keep stable raw water quality in spite of occurrence of algae and muddy inflow. Before reconstruction of the water intake tower in Yongdam reservoir supplying water to Gosan water treatment facility, we have predicted flow patterns of inflowing water into the water intake tower for various withdrawal conditions. It has been predicted that the water in the withdrawal layer is significantly inflowed from the front with fast velocity into the water intake tower irrespective of withdrawal depth, while the water away from the withdrawal layer is withdrawed a little from the side with slow velocity.

Saturation Depth and Slope Stability considering Unsteady Rainfall in Natural Slope (비정상강우를 적용한 자연사면에서의 포화깊이 산정 및 사면안정성 평가)

  • Kim, Sang-Hoon;Kim, Seong-Pil;Son, Young-Hwan;Heo, Joon;Chang, Pyoung-Wuck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • In Korea, most landslides occurr during the rainy season and have shallow failure planes parallel to the slope. For these types of rainfall-induced failures, the most important factor triggering slope unstability is decrease in the matric suction of unsaturated soils with increasing saturation depth by rainfall infiltration. For this reason, estimation of cumulative infiltration has a significance. In this study, infiltration rate and cumulative infiltration are estimated by using both Mein & Larson model based on Green-Ampt infiltration model and using modified Mein & Larson model to which unsteady rainfall is applied. According to the results, the modified model is more reasonable than Mein & Larson method itself in estimation of infiltration rate and saturation depth because of considering real pending condition.

A Study on Shape and Height of Shipwaves

  • Gang, Song-Jin;Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.105-110
    • /
    • 2009
  • Shipwaves am have harmful effects on ships working on the sea, in a harbour or navigational channel and caused beach erosion, seawall destruction. This study aims to investigate describe the characteristics of the wave pattern generated by an individual model ship tested at different velocities and hull forms for a given water depth and to investigate the variations at a given distance from the sailing line under the same conditions. As a result, the angles a's by model ship tests are smaller than those by real ship ones. Wave heights decreases with an increasing the mid-ship cross sectional area $A_s$. The maximum wave height and period increase rapidly in the subcritical speed, and beyond the critical speed the height and period decrease with increasing depth Froude number. And the period keeps constant with the distance from the sailing line.

Enhanced Spherical Indentation Techniques for Property Evaluation (향상된 구형 압입 물성평가법)

  • Lee, Hyung-Yil;Lee, Jin-Haeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.461-471
    • /
    • 2007
  • In this work, indentation theory of Lee $et al.^{(1)}$ for 6% indentation of indenter diameter is extended to an indentation theory for 20% indentation. For shallow indentation, the effect of friction on load-depth curve is negligible, but different materials can show nearly identical load-depth curves. On the basis of this observation, a new numerical approach to deep indentation techniques is proposed by examining the finite element solutions. With this new approach, from the load-depth curve, we obtain stress-strain curve and the values of Young's modulus, yield strength and strain-hardening exponent with an average error of less than 3%.

The Prediction of Hydrodynamic Forces Acting on Ship Hull in Laterally Berthing Maneuver Using CFD

  • Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.253-258
    • /
    • 2003
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to grasp very clearly the magnitude and properties of the hydrodynamic forces acting on ship hull in shallow water. In this study, numerical calculation was made to investigate quantitatively the hydrodynamic force according to the water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. Comparing the computational results to the experimental ones, the validity of the CFD method was verified. The numerical solutions evaluated the hydrodynamic force with good accuracy, and then captured the features of the flow field around the ship in detail. The transitional lateral force in a state ranging from rest to uniform motion is modeled by using the concept of the circulation.