• Title/Summary/Keyword: shallow depth

Search Result 1,034, Processing Time 0.03 seconds

Characteristics of Slope Failure Due to Local Downpour and Slope Stability Analysis with Changing Soil Depth and Groundwater Level (집중호우시 사면 붕괴의 특성 및 토층 심도와 지하수변동에 따른 사면 안정성 해석)

  • Baek Yong;Kwon O-Il;Kim Seong-Hyun;Koo Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.57-66
    • /
    • 2005
  • The failure of cut slope and landslide sometimes come from a local downpour within a short duration in Korea. Especially, most of recent downpour converged upon a limited region and seemed the characteristics of guerilla. Characteristics of slopes failed due to local downpour are analyzed. failure mode is also analyzed with respect to the depth of soil layers and the change of groundwater level. To blow the influence factors of the slope stability during local downpour, the authors conducted field survey for failed slopes and tried to make a comparative study of 1,372 cut slope data distributed in the national road. FLAC-SLOPE(ITASCA Co.) is used to analyze slope stability with changing depth of soil layers and groundwater level. The result shows that the failed types of domestic slopes during local downpour are mainly shallow collapse and landslide. The change of soil depth and groundwater level have influenced on the stability of slopes.

Mechanism of Phytotoxicity of Dithiopyr in Rice (벼에서 Dithiopyr의 약해발생(藥害發生) 기구(機構))

  • Kang, K.S.;Pyon, J.Y.
    • Korean Journal of Weed Science
    • /
    • v.14 no.2
    • /
    • pp.101-106
    • /
    • 1994
  • Factors affecting phytotoxicity of dithiopyr in rice such as transplanting depth, seedling age, soil texure were examined and mechanism of phytotoxicity in rice was also determined by absorption study of $^{14}C$-dithiopyr in rice seedlings under above conditions. Rice injury was occurred in shallow transplanting depth, young rice seedlings and sandy soil conditions. Higher amount of dithiopyr was absorbed in rice at shallow transplanting depth and sandy soil conditions which may related to phytotoxicity of dithiopyr.

  • PDF

GIS를 이용한 영산강 유역의 지하수의 산출특성

  • Seo Gu-Won;Park Bae-Yong;Jeong Chan-Deok
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.61-64
    • /
    • 2005
  • The calculated characteristics of groundwater within the Youngsan river basin are : casing depth-17.1m, well depth-74.8m, natural water-2.6m, pumping water-43.9m, yields-391$m^3/D$, transmissivity-16.3$m^3/D/m$, storativity-0.068. As far as hydrogeological units are concerned, in casing depth, weathered granites are deepest followed by gneiss, volcanics, and sediments. In major aquifer development areas, sediments are deepest followed by volcanics, granites and gneiss in more shallow areas, Altogether, the major aquifar development depth of the Youngsan river basin is within the $35{\sim}60m$ range.

  • PDF

Estimation of Saturation Depth by Reflecting Water-redistribution Phenomena at a Natural Slope (수분 재분포를 고려한 강우 침투 시 자연 사면에서의 포화깊이 산정)

  • Kim, Woong-Ku;Chang, Pyoung-Wuck;Cha, Kyung-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.71-79
    • /
    • 2006
  • In Korea, most landslides occurred during the rainy season and had a shallow failure plane parallel to the slope. For these types of rainfall-induced failures, the most important factor triggering slope unstability is decrease in the matric suction of unsaturated soils with increasing saturation depth by rainfall infiltration. The saturation depth was readily estimated using modified Green-Ampt model proposed by Chu et al. (Chu Model) at present. But Chu Model involves some problems for application, because water-redistribution phenomena were not effected. So the modified Chu Model (MCGAM) which reflect water redistribution phono mens was developed. The results showed that the MCGAM had a better agreement with measured volumetric water contents than existing Chu Model.

Optimization of a Savonius hydrokinetic turbine for performance improvement: A comprehensive analysis of immersion depth and rotation direction

  • Mafira Ayu Ramdhani;Il Hyoung Cho
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.141-156
    • /
    • 2024
  • The turbine system converts the kinetic energy of water flow to electricity by rotating the rotor in a restricted waterway between the seabed and free surface. A turbine system's immersion depth and rotation direction are significantly critical in the turbine's performance along with the shape of the rotor. This study has investigated the hydrodynamic performance of the Savonius hydrokinetic turbine (SHT) according to the immersion depth and rotation direction using computational fluid dynamics (CFD) simulations. The instantaneous torque, torque coefficient, and power coefficients are calculated for the immersion ratios Z/D ranging [0.25, 3.0] and both clockwise (CW) and counterclockwise (CCW) rotations. A flow visualization around the rotor is shown to clarify the correlation between the turbine's performance and the flow field. The CFD simulations show that the CCW rotation produces a higher power at shallow immersion, while the CW rotation performs better at deeper immersion. The immersion ratio should be greater than the minimum of Z/D=1.0 to obtain the maximum power production regardless of the rotation direction.

A Study of Hypocentral Depth of Pohang Earthquake (포항 지진의 진원 깊이 연구)

  • Chung, Tae Woong;Lee, Youngmin;Iqbal, Muhammad Zafar;Jeong, Jina
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2018
  • 2017 Pohang earthquake (M 5.4) was more disastrous than 2016 Gyeongju earthquake (M 5.8), partly because of its shallow focal depth. However, precise focal depth of Pohang earthquake is still controversial. Close crustal model showed 6 ~ 11.5 km in relocation depth, whereas other models showed almost surface range. Geothermal study indicated temperature of $300^{\circ}C$ at depth of 7.5 km. Related with observations of seismogenic layer, the focal depth of Pohang earthquake seems to be 7 km depth as obtained by close model.

New site classification system and design response spectra in Korean seismic code

  • Kim, Dong-Soo;Manandhar, Satish;Cho, Hyung-Ik
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A new site classification system and site coefficients based on local site conditions in Korea were developed and implemented as a part of minimum design load requirements for general seismic design. The new site classification system adopted bedrock depth and average shear wave velocity of soil above the bedrock as parameters for site classification. These code provisions were passed through a public hearing process before it was enacted. The public hearing process recommended to modify the naming of site classes and adjust the amplification factors so that the level of short-period amplification is suitable for economical seismic design. In this paper, the new code provisions were assessed using dynamic centrifuge tests and by comparing the design response spectra (DRS) with records from 2016 Gyeongju earthquake, the largest earthquake in history of instrumental seismic observation in Korea. The dynamic centrifuge tests were performed to simulate the representative Korean site conditions, such as shallow depth to bedrock and short-period amplification characteristics, and the results corroborated with the new DRS. The Gyeongju earthquake records also showed good agreement with the DRS. In summary, the new code provisions are reliable for representing the site amplification characteristic of shallow bedrock condition in Korea.

Measurement of Horizontal Coherence Using a Line Array In Shallow Water

  • Park, Joung-Soo;Kim, Seong-Gil;Na, Young-Nam;Kim, Young-Gyu;Oh, Teak-Hwan;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2E
    • /
    • pp.78-86
    • /
    • 2003
  • We analyzed the measured acoustic field to explore the characteristics of a horizontal coherence in shallow water. Signal spatial coherence data were obtained in the continental shelf off the east coast of Korea using a horizontal line array. The array was deployed on the bottom of 130 m water depth and a sound source was towed at 26 m depth in the source-receiver ranges of 1-13 ㎞. The source transmitted 200 ㎐ pure tone. Topography and temperature profiles along the source track were measured to investigate the relationship between the horizontal coherence and environment variations. The beam bearing disturbance and array signal gain degradation is examined as parameters of horizontal coherence. The results show that the bearing disturbance is about ± 8° and seems to be affected by temporal variations of temperature caused by internal waves. The array signal gains show degradation more than 5㏈ by the temporal and spatial variations of temperature and by the down-sloped topography.

Analysis of Cleavage Fracture Toughness of PCVN Specimens Based on a Scaling Model (PCVN 시편 파괴인성의 균열 깊이 영향에 대한 Scaling 모델 해석)

  • Park, Sang-Yun;Lee, Ho-Jin;Lee, Bong-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.409-416
    • /
    • 2009
  • Standard procedures for a fracture toughness testing require very severe restrictions for the specimen geometry to eliminate a size effect on the measured properties. Therefore, the used standard fracture toughness data results in the integrity assessment being irrationally conservative. However, a realistic fracture in general structures, such as in nuclear power plants, may develop under the low constraint condition of a large scale yielding with a shallow surface crack. In this paper, cleavage fracture toughness tests have been made on side-grooved PCVN (precracked charpy V-notch) type specimens (10 by 10 by 55 mm) with various crack depths. The constraint effects on the crack depth ratios were evaluated quantitatively by the developed scaling method using the 3-D finite element method. After the fracture toughness correction from scaling model, the statistical size effects were also corrected according to the standard ASTM E 1921 procedure. The results were evaluated through a comparison with the $T_0$ of the standard CT specimen. The corrected $T_0$ for all of the PCVN specimens showed a good agreement to within $5.4^{\circ}C$ regardless of the crack depth, while the averaged PCVN $T_0$ was $13.4^{\circ}C$ higher than the real CT test results.

Deformation of Non-linear Dispersive Wave over the Submerged Structure (해저구조물에 대한 비선형분산파의 변형)

  • Park, D.J.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.75-86
    • /
    • 1998
  • To design a coastal structure in the nearshore region, engineers must have means to estimate wave climate. Waves, approaching the surf zone from offshore, experience changes caused by combined effects of bathymetric variations, interference of man-made structure, and nonlinear interactions among wave trains. This paper has attempted to find out the effects of two of the more subtle phenomena involving nonlinear shallow water waves, amplitude dispersion and secondary wave generation. Boussinesq-type equations can be used to model the nonlinear transformation of surface waves in shallow water due to effect of shoaling, refraction, diffraction, and reflection. In this paper, generalized Boussinesq equations under the complex bottom condition is derived using the depth averaged velocity with the series expansion of the velocity potential as a product of powers of the depth of flow. A time stepping finite difference method is used to solve the derived equation. Numerical results are compared to hydraulic model results. The result with the non-linear dispersive wave equation can describe an interesting transformation a sinusoidal wave to one with a cnoidal aspect of a rapid degradation into modulated high frequency waves and transient secondary waves in an intermediate region. The amplitude dispersion of the primary wave crest results in a convex wave front after passing through the shoal and the secondary waves generated by the shoal diffracted in a radial manner into surrounding waters.

  • PDF