• Title/Summary/Keyword: shaking table collapse test

Search Result 17, Processing Time 0.027 seconds

Collapse Behavior of an 18-Story Steel Moment Frame during a Shaking Table Test

  • Suita, Keiichiro;Suzuki, Yoshitaka;Takahashi, Motomi
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.171-180
    • /
    • 2015
  • A shaking table test was conducted at the E-Defense shaking table facility to investigate the damage and collapse behavior of a steel high-rise building under exceedingly large ground motions. The specimen is a one-third scale 18-story steel moment frame designed and constructed according to design specifications and practices used in the 1980s and 1990s. The shaking table tests used a long-duration, long-period ground motion simulated for a sequential Tokai, Nankai, and Nankai earthquake scenario. The building specimen was subjected to a series of progressively increasing scaled motions until it completely collapsed. The damage to the steel frame began through the yielding of beams along lower stories and column bases of the first story. After several excitations by increasing scaled motions, cracks initiated at the welded moment connections and fractures in the beam flanges spread to the lower stories. As the shear strength of each story decreased, the drifts of lower stories increased and the frame finally collapsed and settled on the supporting frame. From the test, a typical progression of collapse for a tall steel moment frame was obtained, and the hysteretic behavior of steel structural members including deterioration due to local buckling and fracture were observed. The results provide important information for further understanding and an accurate numerical simulation of collapse behavior.

Experimental identification of the six DOF C.G.S., Algeria, shaking table system

  • Airouche, Abdelhalim;Bechtoula, Hakim;Aknouche, Hassan;Thoen, Bradford K.;Benouar, Djillali
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.137-154
    • /
    • 2014
  • Servohydraulic shaking tables are being increasingly used in the field of earthquake engineering. They play a critical role in the advancement of the research state and remain one of the valuable tools for seismic testing. Recently, the National Earthquake Engineering Research Center, CGS, has acquired a 6.1m x 6.1 m shaking table system which has a six degree-of-freedom testing capability. The maximum specimen mass that can be tested on the shaking table is 60 t. This facility is designed specially for testing a complete civil engineering structures, substructures and structural elements up to collapse or ultimate limit states. It can also be used for qualification testing of industrial equipments. The current paper presents the main findings of the experimental shake-down characterization testing of the CGS shaking table. The test program carried out in this study included random white noise and harmonic tests. These tests were performed along each of the six degrees of freedom, three translations and three rotations. This investigation provides fundamental parameters that are required and essential while elaborating a realistic model of the CGS shaking table. Also presented in this paper, is the numerical model of the shaking table that was established and validated.

Optimization of domes against instability

  • Ye, Jihong;Lu, Mingfei
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.427-438
    • /
    • 2018
  • Static stability is a decisive factor in the design of domes. Stability-related external factors, such as load and supports, are incorporated into structural vulnerability theory by the definition of a relative rate of joint well-formedness ($r_r$). Hence, the instability mechanism of domes can be revealed. To improve stability, an optimization model against instability, which takes the maximization of the lowest $r_r$ ($r_{r,min}$) as the objective and the discrete member sections as the variables, is established with constraints on the design requirements and steel consumption. Optimizations are performed on two real-life Kiewitt-6 model domes with a span of 23.4 m and rise of 11.7 m, which are initially constructed for shaking table collapse test. Well-formedness analyses and stability calculation (via arc-length method) of the models throughout the optimization history demonstrate that this proposed method can effectively enhance $r_{r,min}$ and optimize the static stability of shell-like structures. Additionally, seismic performance of the optimum models subjected to the same earthquake as in the shaking table test is checked. The supplemental simulations prove that the optimum models are superior to the original models under earthquake load as well.

Displacements Behavior of Rock Slope by Shaking Table Test (진동대 실험을 통한 암반비탈면의 변위 거동 특성)

  • Yoon, Won-Sub;Kang, Jong-Chul;Park, Yeon-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.245-254
    • /
    • 2020
  • This study investigated the so far little-researched characteristics of the behaviors of rock slopes at the time of an earthquake. For the selection of the rock block, a proper model was formed by applying the similarity in consideration of the roughness and strength of the rock slope(10m) on the site, and shaking table tests were carried out according to seismic excitement acceleration, and seismic waves. In the case of the inclination angle of the joint plane of 20°, the long period wave at 0.3g or more at the time of the seismic excitement surpassed the length of 100mm, the permissible displacement (0.01H, H:slope height), which brought about the collapse of the rock; the short period wave surpassed the permissible displacement at 0.1g, which caused the collapse of the slope. The rock slope was close to a rigid block and a structure more vulnerable to the long period wave than to the short period wave. It collapsed in the short period wave even at the seismic amplitude smaller than the maximum design acceleration in Korea.

Effect of roof diaphragm on masonry structures under dynamic loading

  • Sathiparan, Navaratnarajah
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.351-366
    • /
    • 2016
  • The structural collapse of masonry structure under dynamic loading displays many possible failure mechanisms often related to interaction between structural components. Roof collapse is one of the major damage mechanisms observed in masonry structures during an earthquake. Better connection between the roof diaphragm and walls may be preventing roof collapse, but it can affect other failure mechanisms. In spite of this fact, less attention has been paid to the influence of the roof diaphragm effect on masonry structures and little research has been implemented in this field. In the present study, the roof diaphragm effect on the unreinforced masonry structure under dynamic loading has been experimentally investigated. Three one-quarter scale one-story adobe masonry house models with different roof conditions have been tested by subjecting them to sinusoid loading on a shaking table simulator. Phenomena such as failure pattern, dynamic performance of masonry structure were examined.

Seismic analysis of a masonry cross vault through shaking table tests: the case study of the Dey Mosque in Algiers

  • Rossi, Michela;Calderini, Chiara;Roselli, Ivan;Mongelli, Marialuisa;De Canio, Gerardo;Lagomarsino, Sergio
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.57-72
    • /
    • 2020
  • This paper presents the results of a monodirectional shaking table test on a full-scale unreinforced masonry cross vault characterized by asymmetric boundary conditions. The specimen represents a vault of the mosque of Dey in Algiers (Algeria), reproducing in detail the mechanical characteristics of masonry, and the constructive details including the presence of some peculiar wooden logs placed within the vault's abutments. The vault was tested with and without the presence of two steel bars which connect two opposite sides of the vault. The dynamic behaviour of both the vault's configurations were studied by using an incremental dynamic analysis up to the collapse of the vault without the steel bars. The use of an innovative high-resolution 3D optical system allowed measure displacement data of the cross vault during the shake table tests. The experimental results were analysed in terms of evolution of damage mechanisms, and in-plane and out-of-plane deformations. Moreover, the dynamic properties of the structure were investigated by means of an experimental modal analysis.

Experimental damage evaluation of prototype infill wall based on forced vibration test

  • Onat, Onur
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.77-90
    • /
    • 2019
  • This paper aims to investigate vibration frequency decrease (vibration period elongation) of reinforced concrete (RC) structure with unreinforced infill wall and reinforced infill wall exposed to progressively increased artificial earthquake load on shaking table. For this purpose, two shaking table experiments were selected as a case study. Shaking table experiments were carried on 1:1 scaled prototype one bay one storey RC structure with infill walls. The purpose of this shaking table experiment sequence is to assess local behavior and progressive collapse mechanism. Frequency decrease and eigen-vector evolution are directly related to in-plane and out-of-plane bearing capacities of infill wall enclosure with reinforced concrete frame. Firstly, frequency decrease-damage relationship was evaluated on the base of experiment results. Then, frequency decrease and stiffness degradation were evaluated with applied Peak Ground Acceleration (PGA) by considering strength deterioration. Lastly, eigenvector evolution-local damage and eigenvector evolution-frequency decrease relationship was investigated. Five modes were considered while evaluating damage and frequency decrease of the tested specimens. The relationship between frequency decrease, stiffness degradation and damage level were presented while comparing with Unreinforced Brick Infill (URB) and Reinforced Infill wall with Bed Joint Reinforcement (BJR) on the base of natural vibration frequency.

Seismic Performance of Steel Industrial Storage Racks Subjected to Korea Earthquakes (국내 발생지진에 의한 물류창고 강재 적재설비의 내진성능 평가)

  • Jeon, Jong-Su;Choi, Hyoungsuk;Seo, Youngdeuk;Kim, Chunggil;Heo, Gwanghee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.149-160
    • /
    • 2018
  • This study experimentally and analytically examines the seismic vulnerability of steel rack storage frames subjected to Korea earthquakes (2016 Gyeongju earthquake and 2017 Pohang earthquake). To achieve this aim, this study selects a three-story, one-bay steel rack frame with a typical configuration of rack frame in Korea. Firstly, the local behavior for frame components is examined by performing monotonic and/or cyclic load tests and the global response and dynamic characteristics of the subject rack frame are investigated by conducting a shaking table test. The analytical model of the rack frame is then created based on the experimental results and is used to perform nonlinear time history analyses with recorded Korea earthquakes. The seismic demand of the rack frame is considerably affected by the spectral acceleration response, instead of peak ground accelerations (peak floor accelerations). Moreover, the collapse fragility curve of the rack frame is developed using incremental dynamic analyses for the Gyeongju and Pohang earthquakes. Fragility results indicate that the ground motion characteristics of these earthquakes do not significantly affect the frame vulnerability at the collapse state.

Seismic Performance Evaluation of Unreinforced and ECC-jacketed Masonry Fences using Shaking Table Test (진동대실험을 사용한 비보강 및 ECC 자켓 보강 조적담장의 내진성능평가)

  • Yonghun Lee;Jinwoo Kim;Jae-Hwan Kim;Tae-Sung Eom;Sang-Hyun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.182-192
    • /
    • 2023
  • In this study, the efficacy of Engineered Cementitious Composite(ECC) jacket for masonry fences subjected to lateral dynamic load was experimentally verified through a shaking table test, comparing it with the performance of an unreinforced masonry(URM) fence. Firstly, dominant frequencies, modal damping ratios and deformed shapes were identified through an impact hammer test. URM and ECC-strengthened fences with heights of 940mm and 970mm had natural frequencies of 6.4 and 35.3Hz, and first modal damping ratios of 7.0 and 5.3%, respectively. Secondly, a shaking table test was conducted in the out-of-plane direction, applying a historical earthquake, El Centro(1940) scaled from 25 to 300%. For the URM fence, flexural cracking occurred at the interface of brick and mortar joint(i.e., bed joint) at the ground motion scaled to 50%, and out-of-plane overturning failure followed during the subsequent test conducted at the ground motion scaled to 30%. On the other hand, the ECC-jacketed fence showed a robust performance without any crack or damage until the ground motion scaled to 300%. Finally, the base shear forces exerted upon the URM and ECC-jacketed fences by the ground motions scaled to 25~300% were evaluated and compared with the ones calculated according to the design code. In contrast to the collapse risk of the URM fence at the ground motion of 1,000-year return period, the ECC-jacketed fence was estimated to remain safe up to the 4,800-year return period ground motion.

Pounding Characteristics of a Bridge Superstructure on Rubber Bearings (교량 상부구조물의 탄성받침 설치에 따른 충돌특성 분석)

  • Choi, Hyoung-Suk;Kim, Jung-Woo;Gong, Yeong-I;Cheung, Jin-Hwan;Kim, In-Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • Seismic structure pounding between adjacent superstructures may induce the destruction of pier and bridge superstructures and cause local damage that leads to the collapse of the whole bridge system. The pounding problem is related to the expansion of joints, gap distance and seismic response of the abutments. In this research, methods of the contact element approach, the linear spring model, the Kelvin-Voigt model and the Hertz model were studied to analyse the pounding characteristics. The shaking table test for a model specimen such as a bridge superstructure with elastomeric bearings was performed to evaluate the contact element approach methods. Relationships between the time history response from the numerical analysis results and the measured response from the shaking table test are compared. The experimental results were not well matched with the numerical analysis results using the existing pounding stiffness models. Therefore, in this study, coefficients are proposed to calculate the appropriate pounding stiffness ratio.