• Title/Summary/Keyword: shaft friction capacity

Search Result 44, Processing Time 0.023 seconds

The effect of group pile installation (무리말뚝 시공의 영향)

  • Lee, Myung-Whan;Hong, Hun-Sung;Kim, Sung-Hoi;Jun, Young-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1303-1311
    • /
    • 2006
  • Most of the piles are designed as group piles. In certain geotechnical environments, the installation of group piles causes heaving of the already installed piles. The unfavorable effects of pile heaving on pile bearing capacity have been well known to field engineers. However not many engineers pay enough attention to this subject. According to our recent researches, not only the bearing capacity but also the pile material could be seriously damaged due to the installation of nearby piles, especially with the cases of precast concrete piles. When the pull-out force due to installation of neighboring piles acting on the already installed precast concrete pile exceeds the shaft friction, pile heaving occurs. At the same time, if the pull-out force exceeds the allowable tensile strength of the precast concrete pile, tensile failure is inevitable, which is critical for the pile integrity. In other cases the pile material was not damaged but serious relaxation occurred as the results of pile heaving. In this paper, the pull-out mechanism due to the installation of group piles is explained.

  • PDF

Evaluation of side resistance for drilled shafts in rock sections

  • Hsiao, Cheng-Chieh;Topacio, Anjerick J.;Chen, Yit-Jin
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.503-511
    • /
    • 2020
  • This study evaluated the side resistance of drilled shafts socketed into rock sections. Commonly used analysis methods for side resistance of piles in rocks are examined by utilizing a large number of load test data. The analysis of the unit side resistance of pile foundations embedded into rock sections is based on an empirical coefficient (α) and the uniaxial compressive strength (qu) or its root (${\sqrt{q_u}}$). The Davisson criterion was used to interpret the resistance capacity from the load test results to acquire the computed relationships. The α-${\sqrt{q_u}}$ relationship is proven to be reliable in the prediction of friction resistance. This study further analyzed the relationship by including the effect of rock quality designation (RQD) on the results. Analysis results showed that the analysis model of α-${\sqrt{q_u}}$-RQD provided better prediction and reliability considering the RQD classification. Based on these analyses, the side resistance of drilled shafts socked into rocks is provided with statistical data to support the analysis.

An Analysis on the Behavior Characteristics of the Side of Drilled Shafts in Rocks (암반에 근입된 현장타설말뚝의 주면부 거동특성 분석)

  • Lee, Hyukjin;Lee, Hyungkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.101-111
    • /
    • 2006
  • In case of drilled shafts installed by drilling through soft overburden onto a strong rock, the piles can be regarded as end-bearing elements and their working load is determined by the safe working stress on the pile shaft at the point of minimum cross-section or by code of practice requirements. Drilled shafts drilled down for some depth into weak or weathered rocks and terminated within these rocks act partly as friction and partly as end-bearing piles. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft pile performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. In this study, the numerical analyses are carried out to investigate the behavior characteristics of side of rock socketed drilled shafts varying the loading condition at the pile head. The difference of behavior characteristics of side resistance is also evaluated with the effects of modelling of asperity.

  • PDF

A study on the Behavior of Large Drilled Shafts with Casings (케이싱이 있는 현장타설말뚝의 거동에 관한 연구)

  • Song, Byeong-Seok;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.99-106
    • /
    • 2005
  • 본 연구에서는 케이싱을 영구부재로 사용함으로써 기존의 현장타설말뚝과 비교하여 시공 성,품질균일성,경제성, 내구성 등을 검토한다. 연구결과 케이싱을 영구부재로 사용하는 경우, 케이싱의 재사용을 위한 인발작업이 불필요하게 되고,말뚝길이전체에 대하여 케이싱을 사용한다면 R.C.D공법에 서 적용하는 슬러리공벽보호공정이 불필요하므로 시공성이 향상되는 것으로 판단된다. 케이싱을 영구부 재로 사용하는 현장타설말뚝의 지지력은 일반 깊은 기초의 지지력을 산정하는 방법과 동일하게 구해질 수 있다. 대구경의 영구케이싱이 있는 현장타설말뚝을 시공한다면 공내에 간단한 장비와 인력을 투입해서 선단부를 그라우팅방법 등으로 강화시킴으로써 선단지지력을 효과적으로 증대시킬 수 있을 것이다. 또한 케이싱 내부로부터 미리제작한 구멍을 통하여 그라우팅, 전단키(shear key) 등을 주입 또는 압입 함으로써 주면마찰력도 크게 향상될 수 있을 것으로 사료된다.

  • PDF

The responses of battered pile to tunnelling at different depths relative to the pile length

  • Mukhtiar Ali Soomro;Naeem Mangi;Dildar Ali Mangnejo;Zongyu Zhang
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.603-615
    • /
    • 2023
  • Population growth and urbanization prompted engineers to propose more sophisticated and efficient transportation methods, such as underground transit systems. However, due to limited urban space, it is necessary to construct these tunnels in close proximity to existing infrastructure like high-rise buildings and bridges. Battered piles have been widely used for their higher stiffness and bearing capacity compared to vertical piles, making them effective in resisting lateral loads from winds, soil pressures, and impacts. Considerable prior research has been concerned with understanding the vertical pile response to tunnel excavation. However, the three-dimensional effects of tunnelling on adjacent battered piled foundations are still not investigated. This study investigates the response of a single battered pile to tunnelling at three critical depths along the pile: near the pile shaft (S), next to the pile (T), and below the pile toe (B). An advanced hypoplastic model capable of capturing small strain stiffness is used to simulate clay behaviour. The computed results reveal that settlement and load transfer mechanisms along the battered pile, resulting from tunnelling, depend significantly on the tunnel's location relative the length of the pile. The largest settlement of the battered pile occurs in the case of T. Conversely, the greatest pile head deflection is caused by tunnelling near the pile shaft. The battered pile experiences "dragload" due to negative skin friction mobilization resulting from tunnel excavation in the case of S. The battered pile is susceptible to induced bending moments when tunnelling occurs near the pile shaft S whereas the magnitude of induced bending moment is minimal in the case of B.

A Study of Governing Factors on the Engineering Behaviour of a Single Pile in Consolidating Ground (압밀이 진행중인 지반에 설치된 말뚝의 공학적 거동을 지배하는 주요인자들에 대한 연구)

  • Kim, Sung-Hee;Jeon, Young-Jin;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.5-16
    • /
    • 2017
  • In the present work, a number of advanced three-dimensional (3D) parametric finite element numerical analyses have been conducted to study the behaviour of a single pile in consolidating ground from coupled consolidation analyses. A single pile with typical minimum and maximum ranges of fill height and clay stiffness has been modelled. The computed results demonstrate that the higher the height of the fill above the clay surface and the smaller the stiffness of the clay, the higher the dragloads and the negative skin friction-induced pile settlements. It has been found that the development of dragloads and pile settlement is more governed by the stiffness of the clay rather than the height of the fill. Positive shaft resistance is mobilised only after the average degree of consolidation is larger than 50%. Although the pile is installed when the degree of consolidation is 50% or more, relatively large negative skin friction can nevertheless develop on the pile. On the other hand, when a load is applied on the pile experiencing an increase in the negative skin friction with time during consolidation, the pile undergoes a large increase in the final settlement of up to 95% compared to that of a pile without axial load on the pile head. The allowable pile capacity when there is negative skin friction on the pile is reduced by about 4-11% compared to a pile without negative skin friction.

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

Skin Friction and End Bearing Resistances of Rock-socketed Piles Observed in Bi-directional Pile Load Tests (양방향 재하시험 결과를 이용한 암반소켓 현장타설말뚝의 주면 마찰력과 선단 지지력)

  • Song, Myung-Jun;Park, Yung-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.17-36
    • /
    • 2013
  • In this paper, the empirical relations of skin friction and end bearing resistance with the results of site investigation in soft rock are proposed through the analysis of bi-directional pile load tests of rock socketed drilled shafts performed at large offshore bridge foundations and high-rise building projects (13 test piles in 4 projects). The site investigation and drilling for bi-directional pile load tests were performed at the centers of test piles, and f-w curves for skin friction and q-w curves for end bearing were plotted based on load-transfer measurements. From the above curves, the empirical relations of skin friction and end bearing resistance with the results of site investigation depending on the mobilized displacement are determined by multiple regression analysis and compared with previous studies. Since the f-w and q-w curves of rock-socketed piles in Korea show hardening behavior according to mobilized displacement, the developed empirical relations by the mobilized displacement are more reasonable than those of previous studies which could not consider the mobilized displacement and suggested the ultimate capacity with unconfined compressive strength only. Particularly, the developed equations correlated with unconfined compressive strength show the best correlations among the equations correlated with other parameters.

Development of a Static Pressure Radial Air Bearing and Estimate of Design Variables (정압형 레디얼 공기베어링 개발 및 설계인자 영향 평가)

  • Kim, Ock-Hyun;Lee, Kyu-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.502-506
    • /
    • 2012
  • Air bearing is characterized by its extremely low friction and cleanliness such that it is widely used especially for spindles with ultra-high rotational speed at several tens of thousands rpm. This paper contributes to design of a static radial air bearing suggesting numerical analysis to anticipate its performances. The numerical analysis is an iteration method based on finite difference formulation of the Reynolds equation. A prototype air bearing has been designed and manufactured. Its load capacity has been measured and compared with the numerical solutions. The result shows good consistency between the experiment and theory, which informs that the numerical analysis can be used as an useful tool to anticipate the performances. Effects of design variables on the bearing performance have been examined by Taguchi's experimental methods using orthogonal array. Number of holes for supplying pressurized air, clearance between shaft and bearing, the hole diameter and bearing length are chosen for the design variables. The result shows that the clearance and the bearing length are the most influential variables while the others can be considered as almost negligible.

Evaluation of Bearing Capacity Enhancement Effect of Base Expansion Micropile Based on a Field Load Test (현장재하시험을 통한 선단확장형 마이크로파일의 지지력 증대효과 분석)

  • Kim, Seok-Jung;Lee, Seokhyung;Han, Jin-Tae ;Hwang, Gyu-Cheol;Lee, Jeong-Seob ;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.31-44
    • /
    • 2023
  • A base expansion micropile was developed to improve the bearing capacity of the micropile, which bears a simple device installed at the pile base. Under an axial load, this base expansion structure radially expands at the pile tip and attaches itself around ground, compressing the boring wall in the construction stage. In this study, conventional and base expansion micropiles were constructed in the weathered rock where micropiles are commonly installed. Further, field load tests were conducted to verify the bearing capacity enhancement effect. From the load test results, it was revealed that the shaft resistance of base expansion micropiles was about 12% higher than that of conventional micropiles. The load transfer analysis results also showed that compared to conventional micropiles, the unit skin friction and unit end bearing of base expansion micropiles were 15.4% and 315.1% higher, respectively, in the bearing zone of the micropile.