• Title/Summary/Keyword: shaft 효율

Search Result 119, Processing Time 0.041 seconds

Effects of Impeller Shape of Submersible Nonclogging Pump on its Performance (비 막힘형 수중 펌프 임펠러 형상이 펌프 성능에 미치는 영향)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1201-1207
    • /
    • 2012
  • This study was performed to develop a high-efficiency submersible nonclogging pump impeller. Toward this end, we simulated the effect of some parameters such as the outlet position of a blade ($h_I$), outlet width of a blade ($b_2$), and hub profile on the pump efficiency by using the commercial codes ANSYS CFX and BladeGen. The results showed that the pump efficiency was proportional up to $h_I$= 38 mm and $b_2$= 55 mm. It remained constant over these values. However, the head and shaft power were proportional to $h_I$ and $b_2$ in the simulated ranges. The effects of hub profile changes on the pump efficiency were relatively small compared to those of the other parameters.

The Performance Evaluation of the Exhaust Stack used in High Riser Public House (초고층 공동주택 국소배기용 입상덕트의 배기성능평가)

  • Kwon, Yong-Il;Kim, Ung-Yong;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • Exhaust system used in toilet and cooking place of high riser public house is roof fan of two basic types : natural roof ventilator and natural/forced roof ventilator. Natural/forced roof ventilator has a motor in the rotary shaft. There are many high riser public house in Korea. These buildings were not viewed as being major contributors to exhaust pollutants producted in indoor. It was because many engineers thought that exhaust in high riser building depend on stack effect. This study investigates on stack pressure determined by exterior pressure and the difference pressure control in exhaust stack used in high riser public house. This paper focuses mainly on the effect of the time interval for power supply of motor installed in roof fan with function of natural wind velocity and of exhaust air volume of toilet. It is observed there are higher exhaust efficiency than the existing natural roof ventilator.

A Study on Mine Ventilation Network (광산 통기 네트워크 연구)

  • Kim, Soo Hong;Kim, Yun Kwang;Kim, Sun Myung;Jang, Yun Ho
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.217-229
    • /
    • 2017
  • This study focuses on the improvement of the working environment in domestic collieries where temperature is increasing due to heat of the earth that is caused by the long-term mining. In order to improve the working environment of the mine, a ventilation evaluation was carried out for Hwasoon Mining Industry. In order to increase the ventilation efficiency of the mine, numerical analysis of the effect on temperature was carried out by using climsim, a temperature prediction program. The analysis shows that A coal mine needs $6,152m^3/min$ for in-flow ventilation rate but the total input air flowrate is $4,710m^3/min$, $1,442m^3/min$ of in-flow ventilation rate shortage. The 93 m hypothetical ventilation shaft from -395 ML to -488 ML could result about $3^{\circ}C$ temperature drop in the coal mine of -488 ML far. As a result of predicting the $CO_2$ concentration at -523 ML development using artificial neural network, the emission of $CO_2$ increased as the amount of coal and coal bed thickness increased. The factors that have the greatest effect on the amount of $CO_2$ emissions were coal layer thickness and coal mining. And, as the air quantity increases, it has a great effect on the decrease of carbon dioxide concentration.

Analyses of Widely Used Design Codes for Pile Foundation Using the t-z Method (t-z 방법을 이용한 말뚝기초 설계기준별 비교분석)

  • Park, Sungwon;Misra, Anil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.33-42
    • /
    • 2012
  • The efficiency of the current design methods for computing pile resistances is analyzed using field load-settlement tests results. Twelve load-settlement test data for drilled shafts and bored piles were obtained from the literature. These load-test data were fitted using the t-z method. Subsequently, the ultimate resistances were evaluated based upon the failure criteria from following methods: (1) the Davisson's approach and (2) settlement corresponding to 5% or 10% shaft diameter approach. The ultimate resistances for these drilled shafts and bored piles were also predicted using methods based on the design code from North America (United States, Canada), Europe, and Asia (Japan). The pile resistances determined from field load-settlement tests were compared with those calculated using the design codes. The comparisons show that most design codes predict a conservative resistance for drilled shafts and bored piles. However, in the case of drilled shafts, we find that some of the design codes can over-predict the resistance and, therefore, should be applied cautiously. This research also shows that the t-z method can be successfully used to predict the ultimate resistance and the load transfer mechanism for a single pile.

Experimental investigation on valve rattle noise of automotive electronic-wastegate turbochargers (차량용 전자식 웨이스트 게이트 터보차져의 밸브 떨림음에 대한 실험적 고찰)

  • Park, Hoil;Eom, Sangbong;Kim, Youngkang;Hwang, Junyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.686-686
    • /
    • 2013
  • Automotive turbochargers have become common in gasoline engines as well as diesel engines. They are excellent devices to effectively increase fuel efficiency and power of the engines, but they unfortunately cause several noise problems. The noises are classified into mechanical noises induced from movement of a rotating shaft and aerodynamic noises by air flow in turbochargers. In addition to, there is a mechanical noise caused from movement of an actuator, electronically controlling a wastegate valve. It is called as valve rattle noise. The actuator is connected to a valve through a linkage. The noise occurs only if the valve is open, where the linkage is freely contact to neighbor structures without being constrained by any external forces. This condition allows impacts by the pulsation of exhaust gas, and the vibration from the impacts spreads out through turbine housing, causing the rattle noise. The noise is not in mechanical operating wastegate turbochargers because the linkage of an actuator is strongly connected by actuating force. For the electronic wastegate turbocharger, this paper proposed a test device to show the noise generating mechanism with a small vibration motor having an unbalanced shaft. It also shows how to reduce the noise - reduction of linkage clearances, inserting wave washers into a connection, and applying loose fitting in bushing embracing a valve lever to turbine housing.

  • PDF

Experimental study of the air emission effect in the tangential and the multi-stage spiral inlet (접선식 유입구와 다단식 나선 유입구의 공기 배출 효과에 관한 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • Recently, urban inundation was frequently occurred due to the intensive rainfall exceeding marginal capacity of the flood control facility. Furthermore, needs for the underground storage facilities to mitigate urban flood are increasing according to rapidly accelerating urbanization. Thus, in this study, drainage efficiency in drain tunnel connecting to underground storage was investigated from the air-core measurements in the drop shaft against two types of inlet structure. In case of the spiral inlet, the multi-stage structure is introduced at the bottom of the inlet to improve the vortex induction effect at low inflow discharge (multi-stage spiral inlet). The average cross-sectional area of the air-core in the multi-stage spiral inlet is 10% larger than the tangential inlet, and show the highly air emission effect and the highly inflow efficiency at the high inflow discharge. In case of the tangential inlets, the air emission effect decreased after exceeding the maximum inflow discharge, which is required to maintain the inherent performance of the tangential inlet. From the measurements, the empirical formula for the cross-sectional area of the air-core according to locations inside the drop shaft was proposed in order to provide the experimental data available for the inlet model used in experiments.

Performance Characteristics of the 300 MW Integrated Gasification Combined Cycle Plant according to Ambient Temperature (대기온도에 따른 300 MW 석탄가스화복합발전 성능특성)

  • Kim, Young-Mook;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.14 no.3
    • /
    • pp.29-34
    • /
    • 2018
  • In this study, the output and thermal efficiency of Taean Integrated Gasification Combined Cycle Plant were calculated by using the manufacturer's basic design data and the performance correction factor for each atmospheric temperature, and the actual performance was measured at summer and winter representative points. The results were compared with the calculated values to verify their validity. The thermal efficiency is the highest at around $15^{\circ}C$ and lower at lower temperature and higher temperature. This is similar to that of natural gas Combined Cycle Power Plant, but the thermal efficiency has drastically decreased due to the increase of power consumption of the air separation unit at relatively high temperature. The output is highest in the range of 5 to $15^{\circ}C$, and is kept almost constant at below $5^{\circ}C$ and declines above $15^{\circ}C$. The reason why the output does not increase at low temperatures is that the torque limit of the shaft is activated by the increase of the flow rate due to the nitrogen injection of the gas turbine combustor. In order to improve the performance in the future, efforts should be made to improve the power generation output and to reduce the power consumption of the air separation unit in summer.

  • PDF

Development of Lightweight Auger Planting for Strengthen of Screw Shaft (스크류 축이 보강된 경량식혈기 개발)

  • Kim, J.H.;Kim, K.D.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.62-62
    • /
    • 2017
  • 모터와 스크류를 이용한 경량 식혈기를 처음으로 개발함에 따라 실제 산림의 식재 시험에서 발생될 수 있는 것은 감속기와 스크류의 연결부분의 파괴이다. 이 감속기 축의 파괴는 토양내부의 큰 자갈로 인해 스크류가 낄 경우 식재봉을 좌우로 흔들게 되면 가장 취약한 부분인 스크류와 감속기의 연결부위에 가장 강한 모멘트가 걸리게 된다. 물론 작업자의 부주위가 원인이기도 하지만 감속기(K6G30C. Korea)의 축 지름이 8mm이므로 식재봉을 좌우로 흔들면 굽힘파괴가 일어날 가능성이 높다. 감속기의 축이 파괴가 되지 않게 하는 방법은 재료의 강도가 높은 새로운 감속기를 찾은 일과 기존 감속기의 축을 굽힘응력에 안전하게 대응할 수 있게 설계를 하는 방법이 있다. 본 연구에서는 전자에 대한 조사와 동시에 후자에 대한 설계와 제작을 수행하여 기 제작된 경량식혈기와 비교 분석하였다. 스크류 축의 굽힘응력에 대한 대응 방법으로 감속기 축의 보강방법은 감속기 축에 식재봉으로 부터 굽힘응력이 직접 전달되지 않게 하기 위해 모터 하우징의 하부 위치에 감속기 축을 감싸는 Radial Bearing을 결합하였다. 그리고 스크류의 축은 상단의 지름을 크게 키운 상태로 감속기의 축에 연결하는 방법으로 설계하였다. 이때 식혈봉으로 부터 걸리는 모멘트는 스크류의 상단 지름에 걸리게 되는데 상단부는 모터 하우징의 하단과 단단하게 결합함으로써 감속기 축을 보호하게 되고 또한 감속기 축의 길이에서 Bearing과 스크류 상단부 큰 지름이 각각 반반씩 보호하는 형태로 설계하였다. 이와 같이 감속기의 축을 보강한 경우 종전의 식혈기보다 무게가 무거워지게 된다. 즉, 1차 식혈기 무게는 3.38kgf, 2차 시작기는 3.28kgf, 축 강도가 보강된 3차 시작기는 무게가 3.87kgf로 증가되었다. 따라서 종전보가 약 600g 증가되어 다소 무거운 느낌이 들었다. 여기서 리듐 폴리머 배터리와 가방의 무게 3.23kgf를 부가하면 1차, 2차, 3차 시작기의 무게는 각각 6.61kgf, 6.51kgf, 7.1kgf로 나타났다. 따라서 굽힘응력에 대한 보강의 방안으로 설계된 무게 과다가 현장 시험에서 작업자의 피로도 증가와 작업의 비효율성이 예상되어 포트묘의 현장 식재시에 이에 대한 평가를 수행하여 비교 분석할 예정이다.

  • PDF

Combustion Characteristics of the Slinger Combustor (슬링거 연소기의 연소특성)

  • 이강엽;이동훈;최성만;박정배;박영일;김형모;한영민
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.38-43
    • /
    • 2004
  • The study was performed to understand combustion characteristics of the slinger combustor. Liquid fuel is discharged radially outwards through injection holes drilled in the high speed rotating shaft. The spray test was peformed to verify atomizing characteristics with variation of fuel nozzle rotational speed by using PDPA system. SMD was measured at different RPM and values are 70$\mu\textrm{m}$ at 5,000RPM rpm, 60$\mu\textrm{m}$ at 10,000RPM and 40$\mu\textrm{m}$ at 20,000RPM. In the results, we found out that SMD is grown smaller with increasing rotational speed. In KARI combustion test facility, Ignition and combustion tests were performed by using combustor test rig. In the test results, ignition and combustion efficiency were improved according to increasing rotational speed. The measured radial temperature distribution at the combustor exit shows stable and fairly good distribution.

A Study of the Life Test of Hydraulic Pump Driving Gear Box for the Large Excavator (초대형 굴삭기용 유압펌프 구동 기어박스의 수명시험에 관한 연구)

  • Lee, Yong Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.211-216
    • /
    • 2015
  • Large hydraulic excavator weighted 90 tons used the several pumps installed in parallel to use the hydraulic pump driving gearbox to improve fuel consumption by improving the energy efficiency of the hydraulic system. Gearbox connected to hydraulic pump supply the mechanical output to the high pressure and low pressure pump to be supplied by torque and rotation, which are the mechanical power, through a input shaft connected to large size engine of the excavator. So, gearbox connected to hydraulic pump is same as main artery in the human body and is required long life because it operates the hydraulic pump continuously during operating the engine. This study had used oil contamination analysis method to check the wear characteristics of the gearbox and frequency response characteristic analysis method to check the failure of the teeth failures of gearbox, while the test equipment adopted by the electrical feedback method to reduce the energy consumption was operating for the life assessment, in which the required power was 600 kW input power.