• Title/Summary/Keyword: shadow segmentation

Search Result 45, Processing Time 0.024 seconds

Design and Implemtation of a Road Congestion Analysis System using Regional Information (영역정보를 이용한 교통 혼잡도 측정 시스템의 설계 및 구현)

  • Choe, Byeong-Geol;Jeong, Seong-Il;An, Cheol-Ung;Kim, Seung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.6
    • /
    • pp.748-757
    • /
    • 1999
  • 본 논문에서는 차량 영역의 추출을 이용한 효율적인 교통 혼잡도 측정 시스템을 설계하고 구현한다. 차량 영역 정보의 추출은 첫째 영역 분할, 둘째 작은 영역의 제거와 영역의 직사각형화, 셋째 영역의 병합 및 삭제의 단계로 나눌 수 있다. 영역 분할 단계에서는 획득한 도로 영상을 영역 기반 영역 분할에 의해 영역으로 분할한다. 그 다음 영역 분할 후의 영역 정보 중 차량 영역을 추출하는데 영향을 미치지 않는 작은 영역들을 제거하고, 남은 영역들을 직사각형화한다. 마지막으로 차선 별로 남은 영역들을 병합, 삭제함으로써 각 차선마다 차량 영역 정보를 추출할 수 있다. 이러한 방법은 배경 영상과 같은 부가적인 정보를 사용하지 않고 도로 자체 영상만으로 교통 혼잡도를 측정할 수 있으며, 그림자의 영향이 없을 경우 적용할 수 있는 기법이다.Abstract In this paper, we designed and implemented an efficient road congestion analysis system using regional information. To extract vehicle regions from a road image, the system process the image in five steps: segmentation, small region elimination, region rectangularization, region merging and region deletion. First, we segment road image by a threshold value. Then, we eliminate useless small regions to extract vehicle region, and perform region rectangularization. Finally, we extract vehicle region of each lane of the road by region merging and deletion. This method has the advantage of measuring road congestion without additional information such as background images. But this method must be applied to road images without shadow.

An Improved ViBe Algorithm of Moving Target Extraction for Night Infrared Surveillance Video

  • Feng, Zhiqiang;Wang, Xiaogang;Yang, Zhongfan;Guo, Shaojie;Xiong, Xingzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4292-4307
    • /
    • 2021
  • For the research field of night infrared surveillance video, the target imaging in the video is easily affected by the light due to the characteristics of the active infrared camera and the classical ViBe algorithm has some problems for moving target extraction because of background misjudgment, noise interference, ghost shadow and so on. Therefore, an improved ViBe algorithm (I-ViBe) for moving target extraction in night infrared surveillance video is proposed in this paper. Firstly, the video frames are sampled and judged by the degree of light influence, and the video frame is divided into three situations: no light change, small light change, and severe light change. Secondly, the ViBe algorithm is extracted the moving target when there is no light change. The segmentation factor of the ViBe algorithm is adaptively changed to reduce the impact of the light on the ViBe algorithm when the light change is small. The moving target is extracted using the region growing algorithm improved by the image entropy in the differential image of the current frame and the background model when the illumination changes drastically. Based on the results of the simulation, the I-ViBe algorithm proposed has better robustness to the influence of illumination. When extracting moving targets at night the I-ViBe algorithm can make target extraction more accurate and provide more effective data for further night behavior recognition and target tracking.

Selection of Optimal Band Combination for Machine Learning-based Water Body Extraction using SAR Satellite Images (SAR 위성 영상을 이용한 수계탐지의 최적 머신러닝 밴드 조합 연구)

  • Jeon, Hyungyun;Kim, Duk-jin;Kim, Junwoo;Vadivel, Suresh Krishnan Palanisamy;Kim, JaeEon;Kim, Taecin;Jeong, SeungHwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.120-131
    • /
    • 2020
  • Water body detection using remote sensing based on machine interpretation of satellite image is efficient for managing water resource, drought and flood monitoring. In this study, water body detection with SAR satellite image based on machine learning was performed. However, non water body area can be misclassified to water body because of shadow effect or objects that have similar scattering characteristic comparing to water body, such as roads. To decrease misclassifying, 8 combination of morphology open filtered band, DEM band, curvature band and Cosmo-SkyMed SAR satellite image band about Mokpo region were trained to semantic segmentation machine learning models, respectively. For 8 case of machine learning models, global accuracy that is final test result was computed. Furthermore, concordance rate between landcover data of Mokpo region was calculated. In conclusion, combination of SAR satellite image, morphology open filtered band, DEM band and curvature band showed best result in global accuracy and concordance rate with landcover data. In that case, global accuracy was 95.07% and concordance rate with landcover data was 89.93%.

Region-based Building Extraction of High Resolution Satellite Images Using Color Invariant Features (색상 불변 특징을 이용한 고해상도 위성영상의 영역기반 건물 추출)

  • Ko, A-Reum;Byun, Young-Gi;Park, Woo-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.75-87
    • /
    • 2011
  • This paper presents a method for region-based building extraction from high resolution satellite images(HRSI) using integrated information of spectral and color invariant features without user intervention such as selecting training data sets. The purpose of this study is also to evaluate the effectiveness of the proposed method by applying to IKONOS and QuickBird images. Firstly, the image is segmented by the MSRG method. The vegetation and shadow regions are automatically detected and masked to facilitate the building extraction. Secondly, the region merging is performed for the masked image, which the integrated information of the spectral and color invariant features is used. Finally, the building regions are extracted using the shape feature for the merged regions. The boundaries of the extracted buildings are simplified using the generalization techniques to improve the completeness of the building extraction. The experimental results showed more than 80% accuracy for two study areas and the visually satisfactory results obtained. In conclusion, the proposed method has shown great potential for the building extraction from HRSI.

3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT (방사광 전파위상대조 동결미세단층촬영법을 활용한 3차원 조직학)

  • Kim, Ju-Heon;Han, Sung-Mi;Song, Hyun-Ouk;Seo, Youn-Kyung;Moon, Young-Suk;Kim, Hong-Tae
    • Anatomy & Biological Anthropology
    • /
    • v.31 no.4
    • /
    • pp.133-142
    • /
    • 2018
  • 3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in $0.18^{\circ}$ increments through $180^{\circ}$. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens(X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.