• Title/Summary/Keyword: shading conditions

Search Result 211, Processing Time 0.023 seconds

Evaluation of Thermal and Visual Environment for the Glazing and Shading Device in an Office Building with Installed of Venetian Blind (베네시안 블라인드가 적용된 오피스 건물의 외피 투과체 계획을 위한 열·빛 환경 평가에 대한 연구)

  • Kim, Chul-Ho;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.101-109
    • /
    • 2015
  • Purpose: Glazing and shading devices influence a lot on the thermal and visual environment in office buildings. Solar heat and daylight are contrary concept, therefore proper arrangement of thermal and optical performance is needed when designing a glazing and shading devices. The purpose of this study is to examine the conditions of the glazing and shading devices available for promoting the reduction of cooling loads + lighting loads and the improvement in thermal comfort and visual comfort for the summer season in an office building installed with venetian blind. Method: This study established 12 simulation cases which have different glazings and the positions of venetian blind for evaluating different thermal and optical performance. And by using EnergyPlus v8.1 and Window v7.2 program, we quantitatively analyzed cooling loads + lighting loads, thermal comfort and visual comfort in an office building installed with the glazing and shading devices. Result: Consequently, Case 9(Double Low-E+Exterior Blind) is the best arrangement of solar heat gain and daylight influx, thereby becomes the most excellent case of reducing cooling+lighting loads(46.8%) and simultaneously becomes the enhancement case in thermal comfort. Also, DGI(Daylight glare index) under clear sky conditions in summer was evaluated to be 19.6, and thereby satisfied the recommendation level of allowing visual comfort.

the Effects of Shade and N Fertilization on the Dry Matter Production of Orchargrass (비음과 질소시비가 Orchargrass의 건물생산에 미치는 영향)

  • 이주삼
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.3
    • /
    • pp.175-181
    • /
    • 1991
  • The purpose of this experiment was to evaluate the effects of shade and levels of N fertilization on the dry matter yield and chemical compositions of orchardgrass grown under floor of chestnut tree. Shading conditions consist of $S_0$, (full light), $S_1$, (about 6OC4 shade) and $S_2$, (about 70% shade). And, nitrogen fertilizer was applied at 3 levels, O($N_0$), 12($N_1$), and 30($N_2$) kg per 10a, respectively. The results are may be summarized as follows: 1. Maximum total dry matter yield of $S_0$, was obtained about 1.28 ton/lOa at $N_2$, level. But, total dry matter yields of N levels in $S_1$, and $S_2$, were decreased about 42-45% compared with $S_0$. 2. The response of the dry matter yield to N fertilization were differences between shading and levels of N. Thus, the dry matter yield of $S_1$, increased almost linear up to about 30 kg/l0a level, while the dry matter yield of S, was increased slightly up to 30 kgIl0a. But. $S_2$, was increased up to 12 kg/lOa and then decreased slightly with N fertilization over the 12 kg/l0a. 3. Average increase in total dry matter yield to N fertilization were 23.85 kg, 7.97 kg and 5.08 kg DM for $S_0$, $S_1$, and $S_2$, respectively. 4. The level of 12 kg N/lOa is the limiting N level to obtain dry matter production under 60-709 shading conditions. 5. The contents of crude protein arid nitrate nitrogen were increased with shading and incremental N fertilization up to 30 kg/l0a. But, water soluble carbohydrate content was decreased greatly with high shading and high levels of N. 6. Nitrate nitrogen content indicated highly significant positive correlation with crude protein, but significant negative correlation with water soluble carbohydrate content. 7. At 30 kg N level with $S_1$, was necessary to exceed the potentially toxic nitrate nitrogen level of 0.20%.

  • PDF

Acclimatization and Growth Characteristics of Plantlets of Eleutherococcus senticosus Maxim Cultured by Bioreactor (생물반응기에서 배양한 가시오갈피 유식물체의 순화 및 생육특성)

  • Li, Cheng-Hao;Lim, Jung-Dae;Kim, Myong-Jo;Kim, Na-Young;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.4
    • /
    • pp.133-137
    • /
    • 2005
  • Experiments were conducted to find the optimal acclimatization conditions for Eleutherococcus senticosus plantlets regenerated from bioreactor cultured somatic embryos, various acclimatizing conditions were compared regarding both survival rate and growth of the plantlets. Among the various temperature and artificial soil tested, the highest survival rate (88%) was observed when plantlets were acclimatized in Klasmann bed soil at $10^{\circ}C$ When in vitro plantlets directly transplanted to field environment, shading treatment was necessary and 50% shading was more effective than 30% shading. Transplanting season were also important for successful acclimatization of in vitro cultured plantlets, transplanted on March 20 with 50% shading exhibited the best survival rate and further growth.

Application of Stereo Vision for Shape Measurement of Free-form Surface using Shape-from-shading (자유곡면의 형상 측정에서 shape-from-shading을 접목한 스테레오 비전의 적용)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.134-140
    • /
    • 2017
  • Shape-from-shading (SFS) or stereo vision algorithms can be utilized to measure the shape of an object with imaging techniques for effective sensing in non-contact measurements. SFS algorithms could reconstruct the 3D information from a 2D image data, offering relatively comprehensive information. Meanwhile, a stereo vision algorithm needs several feature points or lines to extract 3D information from two 2D images. However, to measure the size of an object with a freeform surface, the two algorithms need some additional information, such as boundary conditions and grids, respectively. In this study, a stereo vision scheme using the depth information obtained by shape-from-shading as patterns was proposed to measure the size of an object with a freeform surface. The feasibility of the scheme was proved with an experiment where the images of an object were acquired by a CCD camera at two positions, then processed by SFS, and finally by stereo matching. The experimental results revealed that the proposed scheme could recognize the size and shape of freeform surface fairly well.

Air Temperature Decreasing Effects by Shading and Ventilation at Micro-scale Experiment Plots (소공간 실험구의 차광과 통풍에 의한 기온저감 효과)

  • Kim, Hyun-Cheol;Woo, Ji-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.39-48
    • /
    • 2010
  • The purpose of this study was to analyze air temperature decreasing effects by shading and ventilation at micro-scale experiment plots, especially focused on the Wet Bulb Globe Temperature (WBGT) in outdoor spaces. To monitor the time-serial changes of Dry-bulb Temperature (DT), Globe Temperature (GT) and Relative Humidity (RH) in the wind blocking and shading conditions, Two hexahedral steel frames were established on the open grass field, the dimension of each frame was 1.5m(W)${\times}$1.5m(L)${\times}$1.5m(H). Four vertical side of one frame was covered by transparent polyethylene film to prevent wind passing through (Wind break plot; WP). The top side of the other frame was covered with shading curtain which intercept 95% of solar light and energy (Shading plot; SP). And, Another vertical steel frame without any treatment preventing ventilation and sunlight was set up, which represents natural conditions (Control plot; CP). The major findings were as follows; 1. The average globe temperature (GT) was highest at WP showing $50.94^{\circ}C$ and lowest at SP showing $34.58^{\circ}C$. The GT of natural condition (SP) was $42.31^{\circ}C$ locating the midst between WP and SP. The difference of GT of each plot was about $8-16^{\circ}C$, which means the ventilation and shading has significant effect on decreasing the temperature. 2. WP showed the highest average dry-bulb temperature (DT) of $38.41^{\circ}C$ which apparently differ from SP and CP showing $31.94^{\circ}C$ and $33.15^{\circ}C$ respectively. The DT of SP and CP were nearly the same. 3. The average relative humidity (RH) was lowest at WP showing 15.21%, but SP and CP had similar RH 28.79%, 28.02% respectively. 4. The average of calculated WBGT were the highest at the WP ($27.61^{\circ}C$) and the lowest at the SP ($23.64^{\circ}C$). The CP ($25.49^{\circ}C$) was in the middle of the others. As summery, compared with natural condition (CP), the wind blocking increased about $2.11^{\circ}C$ WBGT, but the shading decreased about $1.84^{\circ}C$ WBGT. So It can be apparently said that the open space with much shading trees, sheltering furnitures and well-delivered wind corridor can reduce useless and even harmful energy for human outdoor activity considerably in outdoor spaces.

Growth and Yield Under Low Solar Radiation During the Reproductive Growth Stages of Rice Plants (벼의 생식생장기 일조부족이 생육 및 수량에 미치는 영향)

  • Lee, Seonghak;Son, Eunho;Hong, Seongchang;Oh, SungHwan;Lee, JiYoon;Park, Jonghyun;Woo, Sunhee;Lee, Chulwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.2
    • /
    • pp.87-91
    • /
    • 2016
  • Recently, rice growth and production have been influenced by climatic change worldwide. In particular, under low solar radiation and cloudy weather, rice plants show abnormal physiological responses. In this experiment, plants of the rice cultivar Samgwangbyeo grown 40% and 70% shading and natural conditions at the primordium initiation stage (PI) for 30 days and the booting stage for 10 days up to heading were compared. After shading treatments, culm lengths were significnatly longer than that in natural condition plots, and panicle lengths were shorter in the 40% and 70% shading treatment plots compared to control plots. After heading, the production of dry matter treated at the PI stage was significantly lower than that at the booting stage. SPAD values of the leaf color and N concentration of leaves treated with shading were greater than those under natural conditions. In the shading treatment, the lodging index at 20 days after heading was significantly higher than that in natural condition. For yield components, number of panicles, spikelet number per panicle, and ripened grain ratio significantly decreased with shading treatment; thus, rice yield decreased significantly. For rice quality, the protein content of the head rice treated with shading was significantly higher than that in the control plot, but the amylose content of rice treated with shading was signifiantly lower than that in rice in control plots.

Shading Treatment-Induced Changes in Physiological Characteristics of Thermopsis lupinoides (L.) Link (차광처리에 따른 갯활량나물의 생리 특성)

  • Seungju Jo;Dong-Hak Kim;Jung-Won Yoon;Eun Ju Cheong
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.198-209
    • /
    • 2024
  • This study aimed to investigate the impact of light intensity, manipulated through different shading levels, on the growth and physiological responses of Thermopsis lupinoides. To assess the effects of shading treatments, we examined leaf mass per area, chlorophyll content, chlorophyll fluorescence response, and photosynthetic characteristics. T. lupinoidesexhibited adaptive responses under low light conditions (50% shading), showing increased leaf area and decreased leaf mass per area as shading levels increased. These changes indicate morpho-physiological adaptations to reduced light availability. At 50% shading, the physiological and ecological responses were favorable, with optimal photosynthetic functions including chlorophyll content, photosynthesis saturation point, photosynthetic rate, carbon fixation efficiency, stomatal conductance, transpiration rate, and water use efficiency. However, at 95% shading, the essential light conditions for growth were not met, significantly impairing photosynthetic functions. Consequently, 50% shading was determined to be the most optimal condition for T. lupinoides growth. These findings provide valuable insights for effective ex-situconservation practices and site selection for T. lupinoides, serving as foundational data for habitat restoration efforts.

Effect of Shading on Japanese Apricot Fruit Yield and Quality (차광이 매실의 수량 및 품질에 미치는 영향)

  • Jung Gun Cho;Sung Ku Kang;Seung Heui Kim;Sang Kun Park;Yong Bum Kwack
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.84-89
    • /
    • 2024
  • Light is an important component among which plays a crucial role in determining the production and quality of fruit trees. Since the disturbance of light directly leads to reduced photosynthetic efficiency, their damage can be increased especially in fruit trees such as Japanese apricots with a short growing time. In this study, we investigated how the effects of shading condition can affect the production and quality of Japanese apricots according to increased damages by light disturbance in the main orchard complex. The average photosynthetically active radiation (PAR) level in Japanese apricots was rapidly dropped as the shading time was increased compared to the control (304 μmol/m2/s) and the PAR level decreased to 142 μmol/m2/s after shaded for eight hours. The maximum photosynthetic efficiency, with a PAR value of 900 to 1,000 μmol/m2/s, corresponds to the time period without shading and the time period with 2 hours of shading, and these times range from 11 a.m. to 3 p.m. And the time period for shading for 4 hours was from 1:00 p.m. to 2:00 p.m., and under conditions of shading for 6 and 8 hours, the effect was a low amount of light. There was no difference in the weight of Japanese apricots during 2 hours shading time, however, it was significantly reduced as shading time were increased. The difference of the acid content and L/D ratio was not significant on shading time, but the SSC was decreased as times going on. In conclusion, our results indicate that the shading for more than 2 hours make negative effects to decrease the weight and SSC and the yield and affects directly to drop in fruit quality.

Evaluation of Seasonal Daylighting Performance according to Window Compositions of Double Skin Facades (이중외피 창호특성에 따른 계절별 실내 주광환경 평가)

  • Lim, Tae-Sub;Kang, Seung-Mo
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.4
    • /
    • pp.91-98
    • /
    • 2015
  • Double skin façade is known that several features affected the building energy and daylighting performance. That is why the envelope is able to consist of all architectural materials such as glass, aluminum, wood and insulation for vision of residents and workers in buildings. Its specifications is very diverse according to the building designers and building owners. In recent times, visual environment became a major focus and resulted in the development of cutting edge engineering of diverse glazing systems and shading devices by growing interests of friendly environment. Thus this research has evaluated the fluctuations of interior lighting and atmospheric conditions based on double skin facade systems. Especially in terms of daylighting environment as dependent on solar variations, this research provides quantitative analysis of interior lighting conditions and how it affects the living conditions as well as improve the design of interior spaces.

A Novel Hybrid MPPT Method to Mitigate Partial Shading Effects in PV System (PV 시스템의 부분 음영을 대비한 새로운 하이브리드 MPPT 기법)

  • Kim, Dong-Gyun;Kim, Soo-Bin;Jo, Yeong-Min;Choy, Ick;Cho, Sang-Yoon;Lee, Young-Kwoun;Choi, Ju-Yeop
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.21-22
    • /
    • 2015
  • The maximum power point of a photovoltaic array alters with changing atmospheric conditions, temperature conditions, shadow conditions, so it is required to track maximum power point. As much as MPPT(Maximum Power Point Tracking) is important in photovoltaic systems, many MPPT techniques have been developed. In this paper, several major existing MPPT methods are comparatively analyzed and novel hybrid MPPT algorithm is proposed. The proposed hybrid MPPT algorithm is developed in combination with traditional MPPT methods to complement each other for improving performance and mitigating partial shading effects. The proposed algorithm is validated by using PISIM simulation tool and experiment in 3kW system.

  • PDF