• Title/Summary/Keyword: shade avoidance syndrome

Search Result 4, Processing Time 0.037 seconds

Shade Avoidance and the Regulation of Leaf Inclination in Rice

  • Shin, Juhee;Park, Phun Bum
    • Rapid Communication in Photoscience
    • /
    • v.3 no.3
    • /
    • pp.53-55
    • /
    • 2014
  • The shade avoidance syndrome is a morphological and physiological response when plants are exposed to shade. Recent work in Arabidopsis had begun to define the molecular components of the shade avoidance syndrome in dicotyledonous model plant. However, little is known about the shade avoidance response networks in agriculturally important monocotyledon crops such as rice. Here, we found that the degree of bending at the lamina joint is inversely proportional to the R:FR ratio. To elucidate which phytochrome is involved in this response, we did lamina joint inclination assay with the rice phytochrome-deficient mutants (osphyA, osphyB, and osphyC) and the wild type plants. Whereas the osphyA and osphyC knockout mutants bent at the lamina joint in the far-red rich condition as the wild type plants, the osphyB knockout mutants no longer bent at the lamina joint in the far-red rich condition. These results suggest that PHYB acts as a sole photoreceptor in the lamina joint inclination response in rice.

Overexpression of N -terminal lacking mutant HFR1 confers light-independence in a subset of photo-responses

  • Yang Ki-Young;Kim Young-Mi;Song Pill-Soon;Soh Moon-Soo
    • Proceedings of the Korean Society of Potoscience Conference
    • /
    • spring
    • /
    • pp.97-103
    • /
    • 2003
  • Phytochrome controls diverse aspects of plant development in response to the ambient light conditions. HFRl, a basic helix-loop-helix protein, is required for a subset of phytochrome A (phy A)-mediated photo-responses in Arabidopsis. Here, we show that overexpression of HFR1-N105, but not the one of the full-length HFR1, confers exaggerated photo-responses. The transgenic plants overexpressing HFR1- N105 exhibited light-independence in a subset of photo-responses, including germination, de-etiolation, gravitropic hypocotyl growth, and blocking of greening. Overexpression of HFR1-N105 also caused constitutive light-responses in the expression of some light-regulated genes. In addition, the HFR1-N105 overexpressor showed hypersensitive responses under R and FR light, dependently on phyB and phyA, respectively. End-of-day far-red light response and petiole elongation were suppressed in the HFR1-N105 overexpressor plants. Together these results imply that overexpression of HFR1-N105 activated a branch of light signaling, supporting the hypothesis that transcriptional regulation in the nucleus would be the primary mechanism of light signaling in Arabidopsis. We discuss the biotechnological potential of the mutant bHLH protein, HFR1-N105 in regard to suppressed shade avoidance syndrome.

  • PDF

Growth and Flowering Responses of Petunia to Various Artificial Light Sources with Different Light Qualities

  • Park, In Sook;Cho, Kyung Jin;Kim, Jiseon;Cho, Ji Yoon;Lim, Tae Jo;Oh, Wook
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.55-66
    • /
    • 2016
  • This study was carried out to investigate the effect of artificial light sources with different light qualities on the growth and flowering characteristics of a herbaceous long-day plant, Petunia ${\times}$ hybrida Hort. Seedlings of petunia cultivar 'Madness Rose' were potted, acclimated for one week, and grown in a phytotron equipped with tube- and bulb-type fluorescent lamps (FL tube and bulb), tube-type white light-emitting diodes (LED tube), halogen lamps (HL), metal halide lamps (MH), and high pressure sodium lamps (HPS) for 10 weeks. The temperature, photoperiod, and photosynthetic photon flux density (PPFD) in the phytotron were $22{\pm}2^{\circ}C$, 16 h, and $25{\pm}2{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. Light sources combined with HL promoted stem elongation, and plant height and internode length decreased with increasing red to far-red (R:FR) ratio. FL tube + LED tube, HPS, and FL tube promoted branching, whereas plants grown under light sources combined with HL did not have any branches. Days to flowering (from longest to shortest) occurred as follows: FL tube + HL > FL tube + HL > MH > HPS = FL tube + FL bulb > FL tube + LED tube > LED tube > FL tube, indicating that reducing the R:FR ratio of the light sources promoted flowering. Only 20% of plants grown under an FL tube flowered, whereas under all other treatments, 100% of plants flowered. At 10 weeks after treatment, plants grown under HPS and MH had (cumulatively) 12 open flowers, and those grown under FL tube + FL bulb, LED tube, FL tube + LED tube, and HPS treatment had approximately seven flower buds. These results suggest that light sources with low R:FR ratios promote flowering and stem elongation in petunia, but they reduce its ornamental value due to overgrowth and poor branching.

MACROPHYLLA/ROTUNDIFOLIA3 gene of Arabidopsis controls leaf index during leaf development (잎의 발달단계의 leaf index를 조절하는 애기장대 MACROPHYLLA/ROTUNDIFOLIA3 유전자)

  • Jun, Sang-Eun;Chandrasekhar, Thummala;Cho, Kiu-Hyung;Yi, Young-Byung;Hyung, Nam-In;Nam, Jae-Sung;Kim, Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.285-292
    • /
    • 2011
  • In plants, heteroblasty reflects the morphological adaptation during leaf development according to the external environmental condition and affects the final shape and size of organ. Among parameters displaying heteroblasty, leaf index is an important and typical one to represent the shape and size of simple leaves. Leaf index factor is eventually determined by cell proliferation and cell expansion in leaf blades. Although several regulators and their mechanisms controlling the cell division and cell expansion in leaf development have been studied, it does not fully provide a blueprint of organ formation and morphogenesis during environmental changes. To investigate genes and their mechanisms controlling leaf index during leaf development, we carried out molecular-genetic and physiological experiments using an Arabidopsis mutant. In this study, we identified macrophylla (mac) which had enlarged leaves. In detail, the mac mutant showed alteration in leaf index and cell expansion in direction of width and length, resulting in not only modification of leaf shape but also disruption of heteroblasty. Molecular-genetic studies indicated that mac mutant had point mutation in ROTUDIFOLIA3 (ROT3) gene involved in brassinosteroid biosynthesis and was an allele of rot3-1 mutant. We named it mac/rot3-5 mutant. The expression of ROT3 gene was controlled by negative feedback inhibition by the treatment of brassinosteroid hormone, suggesting that ROT3 gene was involved in brassinosteroid biosynthesis. In dark condition, in addition, the expression of ROT3 gene was up-regulated and mac/rot3-5 mutant showed lower response, compare to wild type in petiole elongation. This study suggests that ROT3 gene has an important role in control of leaf index during leaf expansion process for proper environmental adaptation, such as shade avoidance syndrome, via the control of brassinosteroid biosynthesis.