• Title/Summary/Keyword: sh-sy5y cells

Search Result 188, Processing Time 0.031 seconds

Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells

  • Kim, Han Bit;Yoo, Byung Sun
    • Toxicological Research
    • /
    • v.32 no.3
    • /
    • pp.239-243
    • /
    • 2016
  • Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of $3{\mu}g/mL$, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis ($0.3{\sim}3{\mu}g/mL$) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to $3{\mu}g/mL$ propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells.

Protective effects of added Bo-Yang-Hwan-Oh-Tang on $H_2O_2-induced$ neurotoxicity in SH-SY5Y neuronal cells (가매보양환오탕(加昧補陽還五湯)의 SH-SY5Y 뇌신경세포에서 산화적 손상에 의한 세포사멸에 대한 보호효과)

  • Han, Hyung-Soo;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.85-92
    • /
    • 2006
  • Objectives : To evaluate the neuroprotective effects of added Bo-Yang-Hwan-Oh-Tang (BHT), we investigated the neuronal death protection effects to oxidative damages in SH-SY5Y neuronal cells. Methods : To study the cytotoxic effects of BHT on SH-SY5Y cells, the cell viability was determined by MTT assay. To investigate the neuronal death protection of BHT, SH-SY5Y cells were induced oxidative damages by $H_2O_2$ and then assayed the cell viability and DNA fragmentation. We also investigated DPPH free radical scavenging effect of BHT by tube test. Results : In MTT assay, $1000{\mu}g/ml$ of BHT was not showed the cytotoxic effect on SH-SY5Y cells. BHT protected SHSY5Y cells from $H_2O_2-induced $ neuronal cell death in a dose-dependent manner. BHT also protected SH-SY5Y cells from $H_2O_2-induced$ DNA fragmentation. BHT effectively scavenged DPPH free radicals in a dose-dependent manner. Conclusion : These data suggest that BHT may have strong antioxidant effects through the free radical scavenging and neuroprotective effects in human neuronal cells.

  • PDF

Transglutaminase-2 Is Involved in All-Trans Retinoic Acid-Induced Invasion and Matrix Metalloproteinases Expression of SH-SY5Y Neuroblastoma Cells via NF-κB Pathway

  • Lee, Hye-Ja;Park, Mi-Kyung;Bae, Hyun-Cheol;Yoon, Hee-Jung;Kim, Soo-Youl;Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.286-292
    • /
    • 2012
  • All-trans retinoic acid (ATRA) is currently used in adjuvant differentiation-based treatment of residual or relapsed neuroblastoma (NB). It has been reported that short-term ATRA treatment induces migration and invasion of SH-SY5Y via transglutaminase-2 (Tgase-2). However, the detailed mechanism of Tgase-2's involvement in NB cell invasion remains unclear. Therefore we investigated the role of Tgase-2 in invasion of NB cells using SH-SY5Y cells. ATRA dose-dependently induced the invasion of SH-SY5Y cells. Cystamine (CTM), a well known tgase inhibitor suppressed the ATRA-induced invasion of SH-SY5Y cells in a dose-dependent manner. Matrix metalloproteinase -9 (MMP-9) and MMP-2, well known genes involved in invasion of cancer cells were induced in the ATRA-induced invasion of the SH-SH5Y cells. Treatment of CTM suppressed the MMP-9 and MMP-2 enzyme activities in the ATRA-induced invasion of the SH-SY5Y cells. To confirm the involvement of Tgase-2, gene silencing of Tgase-2 was performed in the ATRA-induced invasion of the SH-SH5Y cells. The siRNA of Tgase-2 suppressed the MMP-9 and MMP-2 activity of the SH-SY5Y cells. MMP-2 and MMP-9 are well known target genes of NF-${\kappa}B$. Therefore the relationship of Tgase-2 and NF-${\kappa}B$ in the ATRA-induced invasion of the SH-SY5Y cells was examined using siRNA and CTM. ATRA induced the activation of NF-${\kappa}B$ in the SH-SY5Y cells and CTM suppressed the activation of NF-${\kappa}B$. Gene silencing of Tgase-2 suppressed the MMP expression by ATRA. These results suggested that Tgase-2 might be a new target for controlling the ATRA-induced invasion of NBs.

Transcriptional Regulation of Human GD3 Synthase (hST8Sia I) by Fenretinide in Human Neuroblastoma SH-SY-5Y Cells (사람 신경모세포종 세포주 SH-SY5Y에서 fenretinide에 의한 GD3합성효소(hST8Sia I)의 전사조절기작)

  • Kang, Nam-Young;Kwon, Haw-Young;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1332-1338
    • /
    • 2010
  • To elucidate the mechanism underlying the regulation of hST8Sia I gene expression in FenR-induced SH-SY5Y cells, we characterized the promoter region of the hST8Sia I gene. Functional analysis of the 5'-flanking region of the hST8Sia I gene showed that the -1146 to -646 region functions as the FenR-inducible promoter of hST8Sia I in SH-SY5Y cells. Site-directed mutagenesis indicated that the NF-&B binding site at -731 to -722 was crucial for the FenR-induced expression of hST8Sia I in SH-SY5Y cells. To investigate which signal transduction pathway was involved in FenR-stimulated induction of hST8Sia I in SH-SY5Y cells, we performed Western blot analysis using phospho-specific antibodies in order to measure their degree of regulatory phosphorylation. Phosphorylations of AKT and RelA (p65) subunit of NF-${\kappa}B$ were significantly elevated in cytosolic and nuclear fractions of FenR-stimulated SH-SY5Y cells, respectively, than in control or DMSO-treated SH-SY5Y cells. These results suggest that FenR induce transcriptional up-regulation of hST8Sia I gene expression through translocation of RelA (p65) subunit of NF-${\kappa}B$ to nucleus by AKT signal pathway in SH-SY5Y cells.

Neuroprotective Effects of Stachys sieboldii Miq. Extract Against Ischemia/reperfusion-induced Apoptosis in SH-SY5Y Neuroblastoma Cells (허혈-재관류 유도 신경세포사멸에 대한 초석잠 추출물의 신경보호 효과 연구)

  • Young-Kyung Lee;Chul Hwan Kim;Su Young Shin;Buyng Su Hwang;Min-Jeong Seo;Hye Jin Hwang;Kyung-Min Choi;Jin-Woo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.76-76
    • /
    • 2020
  • Stachys sieboldii Miq. (chinese artichoke), which has been extensively used in oriental traditional medicine to treat of ischemic stroke; however, the role of Stachys sieboldii Miq. (SSM) in cerebral ischemia/reperfusion (I/R) injury is not yet fully understood. In the current study, the neuroblastoma cell line (SH-SY5Y) were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) to simulate I/R injury in vitro model. The results showed that SSM improved OGD/R-induced inhibitory effect on cell viability of SH-SY5Y Cells. SSM displayed anti-oxidative activity as proved by the decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in OGD/R-induced SH-SY5Y Cells. In addition, cell apoptosis was markedly decreased after SSM treatment in OGD/R-induced SH-SY5Y Cells. The up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio that in turn protected the activation of caspase-9 and -3, and inhibition of poly (ADP-ribose) polymerase cleavage, which was associated with the blocking of cytochrome c release to the cytoplasm. Collectively, SSM protected human neuroblastoma SH-SY5Y cells from OGD/R-induced injury via preventing mitochondrial-dependent pathway through scavenging excessive ROS, suggesting that SSM might be a potential agent for the ischemic stroke therapy.

  • PDF

Neuroprotective effects of resveratrol on 6-hydroxydopamine-induced damage of SH-SY5Y cell line (6-Hydroxydopamine 유발 SH-SY5Y 세포주 손상에 대한 resveratrol의 신경보호 효과)

  • Chang, Geon-Cheon;Kim, Hyoung-Chun;Wie, Myung-Bok
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Parkinson's disease is known to exhibit progressive degeneration of the dopaminergic neurons in the substantia nigra via inhibition of glutathione metabolism. It is well known that 6-Hydroxydopamine (6-OHDA) induces Parkinson's disease-like symptoms, while resveratrol (3,5,4'-trihydroxystilbene) has been shown to have anti-inflammatory and antioxidant effects. In the present study, we investigated the neuroprotective effects of resveratrol, a phytoalexin found in grapes and various plants, on 6-OHDA-induced cell damage to the SH-SY5Y human neuroblastoma cell line. Resveratrol (5 and 10 ${\mu}M$) inhibited 6-OHDA (60 ${\mu}M$)-induced cytotoxicity in SH-SY5Y cells and induced a reduction of the number of apoptotic nuclei caused by 6-OHDA treatment. Additionally, the total apoptotic rate of cells treated with both resveratrol (10 ${\mu}M$) and 6-OHDA (60 ${\mu}M$) was less than that of 6-OHDA treated cells. Resveratrol also dose-dependently (1, 5 and 10 ${\mu}M$) scavenged reactive oxygen species (ROS) induced by 6-OHDA in SH-SY5Y cells and prevented depletion of glutathione in response to the 6-OHDA-induced cytotoxicity in the glutathione assay. Overall, these results indicate that resveratrol exerts a neuroprotective effect against 6-OHDA-induced cytotoxicity of SH-SY5Y cells by scavenging ROS and preserving glutathione.

Protective Effects of Sosokmyoung-tang Against Parkinson's Model in Human Neuroblastoma SH-SY5Y Cells (사람 신경모세포종 SH-SY5Y 세포주의 파킨슨 모델에 대한 소속명탕(小續命湯)의 보호효과)

  • Woo, Chan;You, Ju-Yeon;Jang, Chul-Yong;Kim, Hyo-Rin;Shin, Yong-Jeen;Moon, A-Ji;Shin, Sun-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.3
    • /
    • pp.298-308
    • /
    • 2014
  • Objectives: In this study we made an effort to investigate the protective effect of SSMT on the N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) -induced cytotoxicity of SH-SY5Y cells. Methods: The cell viability was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MMT) assay. The fluorescence intensity was measured by using a dye and then with propidium iodide (PI) DNA flow cytometry analysis of the effects on the cell cycle of the SH-SY5Y cells and were used to measure the fluorescence of intracellular reactive oxygen species generation by MPTP. Results: Pretreatment of SSMT significantly suppressed MPTP-induced cytotoxicity, which was revealed as apoptosis characterized by the reduction of cell viability, the increase of ROS production, and the loss of mitochondrial membrane potential in SH-SY5Y cells. Conclusions: These findings suggest that SSMT exerts neuroprotective effects on human neuroblastoma SH-SY5Y cells by MPTP-induced dopaminergic neurodegeneration.

Neuroprotective Effects of Bee Venom, which Removes High Molecular Elements against $MPP^+$-induced Human Neuroblastoma SH-SY5Y Cell Death ($MPP^+$로 유도된 SH-SY5Y신경세포 사멸에 대한 고분자성분제거 봉독약침액의 신경보호 효과 연구)

  • Bae, Kwang-Rok;Doo, Ah-Reum;Kim, Seung-Nam;Park, Ji-Yeon;Park, Hi-Joon;Lee, Hye-Jung;Kwon, Ki-Rok
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.2
    • /
    • pp.254-263
    • /
    • 2010
  • Objectives : The neuroprotective effects of bee venom (BV) have been demonstrated in many studies, but bee venom has many side effects. So we used sweet bee venom (SBV), which has high molecular elements removed to reduce the side effects. I examined the neuroprotective effect of sweet bee venom in 1-methyl-4-phenylpyridine ($MPP^+$)-induced human neuroblastoma SH-SY5Y cells. Methods : To observe the possible toxicity of SBV itself, SH-SY5Y cells were treated with SBV in various concentrations for 3 h and $MPP^+$ in concentrations (1 and 5mM) for 24h. To investigate the protective effect of SBV against $MPP^+$ toxicity, SH-SY5Y cells were pretreated with vehicle or nontoxic concentrations of SBV for 3h and the cells were not washed, followed by incubation with respective concentrations of SBV and 1 mM $MPP^+$ for 24h. To investigate the protective effect of SBV against $MPP^+$ toxicity, SH-SY5Y cells were pretreated with vehicle or nontoxic concentrations of SBV for 3h and the cells were not washed, followed by incubation with respective of SBV(0.5%), 1 mM $MPP^+$, 5uM AKT inhibitor(LY984002) and 10uM ERK inhibitor(PD98059) for 24 h. The protective effect was measured by cell viability assay. To investigate the degree of apoptosis, caspase-3 enzyme activity was measured in control, $MPP^+$, SBV+$MPP^+$. Results : SBV (0.5%) pretreatment protected the SH-SY5Y cells against $MPP^+$-induced apoptotic cell death. The cell viability was higher in the SH-SY5Y cells that were pretreated with vehicle or nontoxic concentrations of SBV than those not pretreated. The caspase-3 activity was lower in the pretreated groups than these not pretreated. ERK and AKT enzymes have a role in the neuroprotective effects of the sweet bee venom. Conclusions : The results demonstrate that SBV has a protective effect on dopaminergic neurons against $MPP^+$ toxicity. This data suggest that SBV could be a potential therapeutic tool for neurodegenerative diseases such as Parkinson's disease(PD).

Genome-wide Examination of Chromosomal Aberrations in Neuroblastoma SH-SY5Y Cells by Array-based Comparative Genomic Hybridization

  • Do, Jin Hwan;Kim, In Su;Park, Tae-Kyu;Choi, Dong-Kug
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.105-112
    • /
    • 2007
  • Most neuroblastoma cells have chromosomal aberrations such as gains, losses, amplifications and deletions of DNA. Conventional approaches like fluorescence in situ hybridization (FISH) or metaphase comparative genomic hybridization (CGH) can detect chromosomal aberrations, but their resolution is low. In this study we used array-based comparative genomic hybridization to identify the chromosomal aberrations in human neuroblastoma SH-SY5Y cells. The DNA microarray consisting of 4000 bacterial artificial chromosome (BAC) clones was able to detect chromosomal regions with aberrations. The SH-SY5Y cells showed chromosomal gains in 1q12~ q44 (Chr1:142188905-246084832), 7 (over the whole chro-mosome), 2p25.3~p16.3 (Chr2:18179-47899074), and 17q 21.32~q25.3 (Chr17:42153031-78607159), while chromosomal losses detected were the distal deletion of 1p36.33 (Chr1:552910-563807), 14q21.1~q21.3 (Chr14:37666271-47282550), and 22q13.1~q13.2 (Chr22:36885764-4190 7123). Except for the gain in 17q21 and the loss in 1p36, the other regions of gain or loss in SH-SY5Y cells were newly identified.

Effect of Emodin on Hydrogen Peroxide Production in Polyinosinic-Polycytidylic acid-induced Human Neuroblastoma SH-SY5Y Cells (Emodin이 polyinosinic-polycytidylic acid로 유발된 인간 신경모세포종 SH-SY5Y의 hydrogen peroxide 생성증가에 미치는 영향)

  • Lee, Ji-Young;Kim, Young-Jin;Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.6
    • /
    • pp.1039-1043
    • /
    • 2011
  • The purpose of this study is to investigate the modulatory effect of emodin on hydrogen peroxide production in human blastoma SH-SY5Y cells induced by the synthetic analog of double-stranded RNA [polyinosinic-polycytidylic acid]. Hydrogen peroxide production was measured by dihydrorhodamine 123 (DHR) assay. Emodin significantly inhibited the polyinosinic-polycytidylic acid (PIC)-induced production of hydrogen peroxide for 0.5, 2, 12, 18, and 24 hr incubation at the concentrations of 5, 10, 25, and 50 uM in SH-SY5Y (P < 0.05) in dose dependent manner. These results suggest that emodin has neuroprotective property related with its inhibition of hydrogen peroxide production in PIC-induced neuronal cells.