• Title/Summary/Keyword: sexed semen

Search Result 11, Processing Time 0.014 seconds

In vitro fertilization using sex-sorted boar sperm mediated by magnetic nanoparticles

  • Chung, Hakjae;Baek, Sunyoung;Sa, Soojin;Kim, Youngshin;Hong, Joonki;Cho, Eunseok;Lee, Jihwan;Ha, Seungmin;Son, Jungho;Lee, Seunghwan;Choi, Inchul;Kim, Kyungwoon
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.979-985
    • /
    • 2020
  • A wide range of techniques have been developed to separate X or Y- chromosome-bearing sperm. In particular, bovine semen sex-sorted by using flow cytometry based on differences in the amount of DNA between X and Y chromosome bearing sperm is used in dairy farms. The first piglets were produced using sex-sorted sperm 30 years ago. However, sexed sperm have not been commercially available in pigs because the flow cytometry technique is not capable of sorting the high number of sperm required for porcine artificial insemination (AI), and the prolonged exposure to an electrical filed might damage to the DNA in sperm. The purpose of this study was to evaluate a boar sperm sorting method based on magnetic nanoparticles. A flow cytometer assay verified the efficacy of the magnetic nanoparticles (> 90% of sex-sorted sperm). In addition, a duplex polymerase chain reaction (PCR) assay using sex chromosome specific genes including SRY (sex-determining region Y; male), ZFY (zinc finger protein Y-linked; male), and ZFX (zinc finger protein X-linked; female) showed that in vitro fertilized porcine embryos by X and Y-chromosome bearing sperm were 100% female (40/40) and 72% female (35/48), respectively, at 8-cell or morula stages, suggesting that the sex-sorted sperm were fertile. In conclusion, our findings suggest that the sex-sorted method based on magnetic nanoparticles can be utilized for porcine sex-sorted AI.