• Title/Summary/Keyword: sewer data

Search Result 184, Processing Time 0.032 seconds

Eco-friendliness Evaluation of a Low-Noise and Dust-Recovery Type Pavement Cutter (저소음·분진회수형 도로절단기의 친환경성 평가)

  • Kim, Kyoon Tai
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.194-203
    • /
    • 2021
  • With the recent increase in maintenance works on water and sewer pipes as well as district heating supply pipes, pavement cutting work using pavement cutter is on the rise. The pavement cutting operation generates considerable dust (cutting sludge) as well as noise; therefore, it is necessary to apply eco-friendly technologies that have low noise and dust recovery capability. Thus far, various equipment for recovering dust have been developed; however, there is a limitation in that the environmental friendliness is not quantified. Therefore, in this study, we developed a low-noise, dust-recovery type pavement cutter that can fundamentally remove the causes of environmental hazards such as noise and dust and evaluated the eco-friendliness of the pavement cutting process performed by this cutter. To this end, an integrated water cooling-sludge recovery system composed of a vacuum device and a sludge suction unit was developed, and the developed system was applied to a pavement cutter. Subsequently, the developed equipment was applied to the test bed, and data related to its eco-friendliness were collected and evaluated. The results showed that the cutting sludge recovery rate of the developed equipment was greater than 83%, the noise level was approximately 82 - 83 dB, and the sound power level was 115 dB. The results of this study will be used as basic data to develop improved pavement cutters in the future with improved cutting sludge recovery performance and lower noise.

Study on the Applicability of Muography Exploration Technology in Underground Space Development (지하공간개발에서 뮤오그래피 탐사기술의 적용성에 관한 연구)

  • Seo, Seunghwan;Lim, Hyunsung;Ko, Younghun;Kwak, Kiseok;Chung, Moonkyung
    • Explosives and Blasting
    • /
    • v.39 no.4
    • /
    • pp.22-33
    • /
    • 2021
  • Recently, the frequent occurrence of ground subsidence in urban areas has caused increasing anxiety in residents and incurred significant social costs. Among the causes of ground subsidence, the rupture of old water and sewer pipes not only halts the operation of the buried pipes, but also leads to ground and water pollution problems. However, because most pipes are buried after construction and cannot be seen with the naked eye, the importance of maintenance has underestimated compared to other structures. In recent years, integrated physical exploration has been applied to the maintenance of underground pipes and structures. Currently, to investigate the internal conditions and vulnerable portions of the ground, consolidated physical surveys are executed. Consolidated physical surveys are analysis techniques that obtain various material data and add existing data using multiple physical surveys. Generally, in geotechnical engineering, consolidated physical surveys including electrical and surface wave surveys are adopted. However, it is difficult to investigate time-based changes in under ground using these surveys. In contrast, surveys using cosmic-ray muons have been used to scan the inner parts of nuclear reactors with penetration technology. Surveys using muons enable real-time observation without the influence of vibration or electricity. Such surveys have great potential for available technology because of their ability to investigate density distributions without requiring as much labor. In this paper, survey technologies using cosmic ray muons are introduced, and the possibilities of applying such technologies as new physical survey technologies for underground structures are suggested.

Intercepted flow equation at grate inlet on road (도로 빗물받이 유입구의 차집유량 산정식)

  • Kim, Jung Soo;Kwak, Sang Ho;Ryu, Taek Hee;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.537-549
    • /
    • 2016
  • The grate inlets generally were installed to intercept surface runoff on the roads and intercepted flow was drained to the underground sewer system. The equation of interception flow was used to determine the size and spacing of grate inlet on the roads. Therefore, it is necessary to analyze the interception capacity of grate inlet. Hydraulic experimental apparatus which can be changed with the longitudinal slopes(2, 4, 6, 8, 10%) of street, the transverse slopes(2, 4, 7, 10%), and the lengths(50, 100, 150cm) of grate inlet was installed for this study. The range of the experimental discharges were calculated with change of road lanes(2, 3, 4) and design frequencies(5, 10, 20, 30year). As the transverse slope increased, it led to the increase of interception capacity at grate inlets. The long lengths of grate inlet with direction of flow increased the interception capacity by the increase of side inflow. On the basis of the hydraulic model experiment results, the empirical equations for calculation of the interception capacity were derived with regression analysis. As a result of comparison with equations, the suggested equation of this study was estimated reasonable one for increased design frequency. Therefore, this study can suggest the basic data for design of drainage facility at road.

Performance Evaluation of the Runoff Reduction with Permeable Pavements using the SWMM Model (SWMM 분석을 통한 투수성 포장의 유출 저감 특성 평가)

  • Lin, Wuguang;Ryu, SungWoo;Park, Dae Geun;Lee, Jaehoon;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES: This study aims to evaluate the runoff reduction with permeable pavements using the SWMM analysis. METHODS: In this study, simulations were carried out using two different models, simple and complex, to evaluate the runoff reduction when an impermeable pavement is replaced with a permeable pavement. In the simple model, the target area for the analysis was grouped into four areas by the land use characteristics, using the statistical database. In the complex model, simulation was performed based on the data on the sewer and road network configuration of Yongsan-Gu Bogwang-Dong in Seoul, using the ArcGIS software. A scenario was created to investigate the hydro-performance of the permeable pavement based on the return period, runoff coefficient, and the area of permeable pavement that could be laid within one hour after rainfall. RESULTS : The simple modeling analysis results showed that, when an impervious pavement is replaced with a permeable pavement, the peak discharge reduced from $16.7m^3/s$ to $10.4m^3/s$. This represents a reduction of approximately 37.6%. The peak discharge from the whole basin showed a reduction of approximately 11.0%, and the quantity decreased from $52.9m^3/s$ to $47.2m^3/s$. The total flowoff reduced from $43,261m^3$ to $38,551m^3$, i.e., by approximately 10.9%. In the complex model, performed using the ArcGIS interpretation with fewer permeable pavements applicable, the return period and the runoff coefficient increased, and the total flowoff and peak discharge also increased. When the return period was set to 20 years, and a runoff coefficient of 0.05 was applied to all the roads, the total outflow reduced by $5195.7m^3$, and the ratio reduced to 11.7%. When the return period was increased from 20 years to 30 and 100 years, the total outflow reduction decreased from 11.7% to 8.0% and 5.1%, respectively. When a runoff coefficient of 0.5 was applied to all the roads under the return period of 20 years, the total outflow reduction was 10.8%; when the return period was increased to 30 and 100 years, the total outflow reduction decreased to 6.5% and 2.9%, respectively. However, unlike in the simple model, for all the cases in the complex model, the peak discharge reductions were less than 1%. CONCLUSIONS : Being one of the techniques for water circulation and runoff reduction, a high reduction for the small return period rainfall event of penetration was obtained by applying permeable pavements instead of impermeable pavement. With the SWMM analysis results, it was proved that changing to permeable pavement is one of the ways to effectively provide water circulation to various green infrastructure projects, and for stormwater management in urban watersheds.

Numerical Simulation of Urban Flash Flood Experiments Using Adaptive Mesh Refinement and Cut Cell Method (적응적 메쉬세분화기법과 분할격자기법을 이용한 극한 도시홍수 실험 모의)

  • An, Hyun-Uk;Yu, Soon-Young
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.511-522
    • /
    • 2011
  • Two-dimensional shallow water model based on the cut cell and the adaptive mesh refinement techniques is presented in this paper. These two mesh generation methods are combined to facilitate modeling of complex geometries. By using dynamically adaptive mesh, the model can achieve high resolution efficiently at the interface where flow changes rapidly. The HLLC Reimann solver and the MUSCL method are employed to calculate advection fluxes with numerical stability and precision. The model was applied to simulate the extreme urban flooding experiments performed by the IMPACT (Investigation of Extreme Flood Processes and Uncertainty) project. Simulation results were in good agreement with observed data, and transient flows as well as the impact of building structures on flood waves were calculated with accuracy. The cut cell method eased the model sensitivity to refinement. It can be concluded that the model is applicable to the urban flood simulation in case the effects of sewer and stormwater drainage system on flooding are relatively small like the dam brake.

Suggestion of Probable Rainfall Intensity Formula Considering the Pattern Change of Maximum Rainfall at Incheon City (최대강우 패턴 변화를 고려한 인천지방 확률강우강도식의 제안)

  • Han Man-Shin;Choi Gye-Woon;Chung Yeun-Jung;Ahn Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.521-531
    • /
    • 2006
  • The formula was proposed through the examination of probability rainfall intensity formula used in Incheon based upon recent occurrences of heavy rain and extraordinary storms. Random-time maximum annual rainfalls were estimated for durations from ten minutes to twenty-four hours from the data by Korea Meteorological Administration. Eleven types of probability distribution are considered to estimate probable rainfall depths for different storm durations at Incheon city. Three goodness-of-fit tests including Chi-square, Kolmogorov-Smirmov and framer Von Misses were used to analyze the tendency of recent rainfall. Considering maximum rainfall occurred, General Extreme Value(GEV) distribution was chosen as the appropriate probability distribution. Five types of probability rainfall formulas including Talbot type, Sherman type, Japanese type, unified type I and unified type II are considered to determine the best type for rainfall intensity at Incheon. The formula was determined considering the time of concentration of sewer system and river at Incheon city. Unified type I was chosen for its accuracy and was proposed to represent rainfall intensity of Incheon district.

A numerical study on the characteristics of small underground cavities in the surrounding old water supply and sewer pipeline (노후 상하수관 주변지반의 소규모 지하공동 형상 특성을 고려한 수치해석에 관한 연구)

  • An, Joon-Sang;Kang, Kyung-Nam;Song, Ki-Il;Kim, Byung-Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.287-303
    • /
    • 2018
  • In recent years, the occurrence of ground subsidence phenomenon is frequent in Korea. The Korean government has enacted a special law on underground safety and the law will be enforced from January 1, 2018. Under this new law, underground excavation should be assessed for underground safety impacts. After excavation construction, periodic geophysical surveys should be conducted to investigate the occurrence of underground cavities. When underground cavities were discovered, the underground safety was assessed through numerical analysis. However, it is controversial because the method of numerical modeling the discovered underground cavity is due to be established. In this study, the effect of the depth of the underground cavity from the shape of the underground cavity to the underground cavity was studied using a continuum analysis program. In this study, a method to reflect the shape of the underground cavity to the numerical modeling is presented. The relationship between the shape and depth of the underground cavity, and the factor of safety calculated by the shear strength reduction method (SSR) is presented. The results of this study are expected to form the basic data on underground safety impact assessment.

Application of multi-dimensional flood damage analysis in urban area (도시지역 침수피해액 산정을 위한 다차원법 적용)

  • Tak, Yong Hun;Kim, Young Do;Kang, Boosik;Park, Mun Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.397-405
    • /
    • 2017
  • In case of inundation in a city where populations and properties are highly concentrated, unlike rural areas it is necessary to apply the method of calculating the damage amount considering the sewage overflow and the corresponding building damage. In this study, Dorim 1 drainage sector has been analyzed with Multi-Dimensional Flood Damage Assessment (MD-FDA) for flood forecast. It is analyzed with past flood history through the SWMM model and calculated the amount of damage with district base data and the result of flow analysis. The result of the SWMM model to predict a range of flood, it was shown that the wide area after 4 hours (at 16:30) by sewer overflow. The building damage was estimated using MD-FDA. As a result, the maximum flood area has shown as $205,955m^2$ (0~0.5 m: $205,190m^2$, over 0.5 m: $865m^2$) and estimated building damage of Dorim 1 drainage sector is approximately 15.5 billion KRW (Korean won) and other contents is 7 billion KRW (Korean won). Also from 0 to 0.5 m depth estimated damage is approximately 22.4 billion KRW (Korean won) and over 0.5 m is 100 million KRW (Korean won). Based on the results of this study, it would be necessary to estimate the amount of sub-divided flood damage in urban areas according to various damage patterns such as flood depth and flood time.

Connection of Hydrologic and Hydraulic Models for Flood Forecasting in a Large Urban Watershed (대규모 도시유역의 홍수예보를 위한 수리.수문 모형의 연계)

  • Yoon, Seong-Sim;Choi, Chul-Kwan;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.929-941
    • /
    • 2008
  • The objectives of this study are to propose a system for combined use of a hydrologic and a hydraulic model for urban flood forecast model and to evaluate the system on the $300km^2$ Jungrang urban watershed area, which is relatively large area as an urban watershed and consequently composed of very complex drainage pipes and streams with different land uses. In this study, SWMM for hydrologic model and HEC-RAS for hydraulic model are used and the study area is divided into 25 subbasins. The SWMM model is used for sewer drainage analysis within each subbasin, while HEC-RAS for unstready flow analysis in the channel streams. Also, this study develops a GUI system composed of mean areal precipitation input component, hydrologic runoff analysis component, stream channel routing component, and graphical representation of model output. The proposed system was calibrated for the model parameters and verified for the model applicability by using the observation data. The correlation coefficients between simulated and observed flows at the 2 important locations were ranged on 0.83-0.98, while the coefficients of model efficiency on 0.60-0.92 for the verification periods. This study also provided the possibilities of manhole overflows and channel bank inundation through the calculated water profile of longitudinal and channel sections, respectively. It can be concluded that the proposed system can be used as a surface runoff and channel routing models for urban flood forecast over the large watershed area.

A Comparative Analysis on Quality of Life for Coastal and Non-coastal Residents (연안지역과 비연안지역 주민 '삶의 질' 비교분석)

  • Seong, Eun-hye;Kim, Sang-Goo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.215-222
    • /
    • 2018
  • This study aims to compare and analyze the quality of life of residents between those living in coastal and non-coastal areas. The indicators for the quality of life were divided into three different sectors. First, the economic sector observed the rate of population growth, the number of businesses per 1000 people, the employment and unemployment rate. The second was the environmental sector, which included the number of car registrations per capita, water supply and sewer service ratio, the urban park composition area per 1000 people and the road pavement rate. Thirdly, the social sector comprising data about the number of students per teacher, the number of sickbeds in medical institutions per 1000 people, the rate of traffic accidents per 1000 cars and the portion of social welfare budget in general accounting. The analysis method of standardized indicators and T-Test were carried out in 24 coastal cities and 51 non-coastal cities across the country. Results of the indicator comparison suggested there were significant differences in the number of businesses per 1000 people, the road pavement rate and the rate of traffic accidents per 1000 cars. From the results of each sector comparison, the coastal cities showed a higher value than non-coastal cities only in the economic sector. The quality of life comparison showed that coastal cities were better than non-coastal cities but were not statistically significant.