• Title/Summary/Keyword: sewage separation

Search Result 52, Processing Time 0.02 seconds

Control of the Sediment in a Combined Sewer Using a Separation Wall

  • Lim, Bong Su;Kwon, Chung Jin;Kim, Do Young;Lee, Kuang Chun
    • Environmental Engineering Research
    • /
    • 제18권2호
    • /
    • pp.71-75
    • /
    • 2013
  • This study is to evaluate the effects of the separation wall on the sediment quality and quantity in a combined sewer, by surveying the sewer overflow and sediments during a rainfall. Since the separation wall installed in the combined sewer separates the rainfall and the sewage, the flow rate of the sewage is increased, and the amount of the sediment deposited on the sewer is decreased. One sampling point was the outfall of Daesacheon with a separation wall, and the other was the outfall of Gwaryecheon without a separation wall, in Daejeon metropolitan city. The maximum control of the biochemical oxygen demand (BOD) overflow load was more than 38% in the Daesacheon point with the separation wall, during a rainfall of 0.11 mm/hr. The maximum control of the BOD overflow load was 24% in Gwaryecheon without a separation wall, during a rainfall of 1.0 mm/hr. According to the survey results of the sediment in the sewer, the discharged sediment deposited on the sewer in Gwaryecheon point was about 23% to 28% of the total suspended solid during the rainfall. In addition, the average velocity of sewage in the presence of sediment was about 0.30 m/s, and if the separation wall is installed, it was expected to be about 1.01 m/s, that is 3.4 times more than the same conditions, resulting in the reduction of the sediment deposit.

Study on removal of microplastics using magnetic separation

  • Ueda, Reo;Akiyama, Yoko;Manabe, Yuichiro;Sato, Fuminobu
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권3호
    • /
    • pp.12-18
    • /
    • 2022
  • In recent years, the impact of microplastics (MPs) on ecosystems is a serious problem. Since MPs are difficult to recover once they are dispersed into the environment, it is important to remove them at the source. We proposed a magnetic separation of primary MPs (plastics manufactured in minute sizes) sized 10-100 ㎛ that has not been removed in the sewage process, based on the magnetic seeding process. In this study, we used magnetite as a magnetic seeding agent, and conducted magnetic separation experiments in the continuous process using a superconducting solenoidal magnet to investigate the feasibility of practical magnetic separation system of MPs. As a result, 85% separation rate was obtained by continuous separation using high gradient magnetic separation (HGMS) with hydrophobically treated magnetite as a magnetic seeding agent.

합류식 하수관거내 퇴적물이 CSOs에 미치는 영향 및 제어방안 (Effect and Control of the Sediment in the Combined Sewer on CSOs)

  • 임봉수;김도영;이광춘
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.36-43
    • /
    • 2011
  • This study is selected two points of combined sewer that occurred Fish Kill after first flush, that analyzed generation of pollutants and stream runoff generation of combined sewer overflows (CSOs) as fine weather and rainfall. In addition, this study was to analyze the relationship between CSOs and sediments, to propose measures to reduce the sediment relevant with CSOs and rainfall runoff from entering sewage treatment plants and measures for discharged directly into streams when indicate relatively good water quality after overflow. Sediments in combined sewer system was discharged about 50~80% as overflows during rainfall and we can reduce the amount of the CSOs at least 50% or more if the sewer does not exist in the sediments because of the amount of discharge about the amount of intercept has been investigated by 3~5 times. Because of velocity at sediment interval in sewer is very low, sewage velocity of about 3~5 times as much as it can increase the amount of sediment can be reduced if the separation wall is installed. Effective control of BOD overflow load is respectively 77.5%, 75.8% at first point, second point by the separation wall is installed. Drainage area greater than area in this study or many combined sewer overflows region is increased the more effective control of separation wall. Turbidity to measure changes in water quality of overflows can be used as an factor to control the intercept flows because the intercept flows(3Q) after the first flush has lowered removal efficiency and increases the operational load of sewage treatment plants. Sewage water quality after a overflow when the reasonable turbidity was measured at this point flows to excluded intercept flow(1Q) can be discharged to stream.

우오수분리벽을 이용한 합류식 하수관거와 분류식 우수관거의 월류수 제어효과 비교 (Comparison of Pollutant Control in Combined Sewer Overflows and Separated Sewer Overflows using the Separation Wall)

  • 임봉수;김도영;이광춘
    • 한국물환경학회지
    • /
    • 제23권4호
    • /
    • pp.458-466
    • /
    • 2007
  • This study is to evaluate control effects of separation wall by surveying water quality and sewer overflows during dry and wet periods in combined sewer and separated sewer systems. Ravine water from the combined Seokgyo outfall with the separation wall was separated about four times larger than sewage flow during dry periods. The water quality of the combined Seokgyo outfall with separation wall during dry periods is flow weighed average BOD 61 mg/L, the combined Cheonseokgyo outfall without the separation wall is average BOD 71 mg/L, and the separated Pyeongsong center outfall is average BOD 41 mg/L. The BOD concentration in separated outfall form about 57% of the combined outfall, and this means the separated outfall (i.e. storm sewer) is polluted by inflow of sewage. The overflow load of the separated outfall is ten times higher than the combined outfall and its overflow load per rainfall is three times than combined outfall during the wet periods. Therefore, the control plan of overflow load is required in storm sewer. The control effects of the overflow load increased 79% by setting the separation wall in the combined sewer, and showed 27% increase without the separation wall in separated sewer, but forecasted over 80% increase of effects if the separation wall was set.

우오수분리벽을 이용한 합류식 하수관거의 오염물질 제어효과 (Pollutant Control using the Separation Wall between Stormwater and Sewage in a Combined Sewer System)

  • 이광춘;최봉철;임봉수
    • 상하수도학회지
    • /
    • 제18권4호
    • /
    • pp.461-469
    • /
    • 2004
  • This research is to determine the stormwater effects on sewer concentrations by measuring and comparing the flow and pollutant concentrations during dry and rainy periods in the existing BOX type combined sewer pipes. The monitoring was carried out in two sites, which are the Daesachen outfall having PE separation wall in BOX type combined sewer pipes and the Yongunchen outfall not having seperatioin wall. The average flow-weighted BOD concentraion in Yongunchen outfall is 2-fold lower than in Daesachen outfall because of the dilution effect from ravine water. However, the pollutant mass loading is 16 fold higher in Yongunchen outfall than in Daesachen outfall because of more flows. According to the research, the separation wall controls 52% pollutant mass during a storm period (11.5 mm/hr rainfall intensity). Therefore, the Yongunchen combined sewer system (CSS) need separation wall to control and to prevent more pollutant input in stream. In Daesachen area, the maximum sewer flow rate during a storm period measured about 10 fold bigger than average sewer flow during dry periods. Also the concentrations between rainy and dry periods increase approximately 33 fold for BOD and 120 fold for SS. In Yongunchen area, it increases about 9 fold for the maximum flow rate, 18 fold for BOD and 22 fold for SS during a storm. Therefore, the research is concluded that the separation wall between stromwater (or ravine water) and sewage can decrease the dilution effect in CSS and control the pollutant loading.

합류식 하수관거내 우오수분리벽 설치에 따른 부유물질 제어효과 (Effect of separation walls on reduction of suspended solids loading in a combined sewer system)

  • 권충진;임봉수
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.787-796
    • /
    • 2012
  • The purpose of this study is to investigate CSOs(combined sewer overflows) control in the combined sewer with/without separation wall. There is the high correlation between sewage velocity and suspended solid(SS) loading in the sewer without it. The SS/BOD ratio was about 3 times in the area with it, while it was about 5 times in the area without it. Therefore, the accumulated deposit within the sewer has influenced high SS loading in the sewer without it. This study showed that the separation wall installed acquired an acceptable efficiency in controlling the accumulated deposit in the combined sewer. According to this study, the BOD control effect was about 38 % in the sewer with the separation wall, whereas it showed about 24 % in the sewer without it. In this case, it was anticipated that the high pollutant control effect would be expected if the separation wall was installed in the combined sewer.

고온 협기성 연속회분식 공정에 의한 도시하수슬러지 소화 (Thermophilic Sewage Sludge Digestion by Anaerobic Sequencing Batch Reactor)

  • 허준무;박종안;이종화;손부순;장봉기
    • 환경위생공학
    • /
    • 제14권3호
    • /
    • pp.130-138
    • /
    • 1999
  • The feasibility of municipal sewage sludge digestion was investigated by using thermophilic anaerobic sequencing batch reactor(ASBR). One-day settle time was enough for the high performance of solid-liquid separation. The conversion of semi-continuous mode to sequencing batch mode is easily achieved without any adverse effects, although the large amount of sludge equal to the volume ratio of 0.3~06 to reactor volume was added in the feed step of the start-up. The ASBRs had higher conversion capability of organics to biogas than the control reactor. Gas yields of the ASBRs were increased by the average of 50% over the control reactor across a range of hydraulic retention time(HRT)s from 10days to 5days. The thermophilic reactors showed higher gas production than mesophilic reactor. Removal efficiencies of organic matter exceeded 80% on the basis of supernatants, except that at the reactor. Solid-liquid separation was essential in the performance of the ASBR, especially, at the lower HFT. The ASBRs were highly efficient in the retention of activated biomass within the reactor. thus compensating for increased equivalent organic loading rate through increased solids retention times followed by the increased solids, while maintaining shorter HRTs.

  • PDF

A Study on the Improvement of Membrane Separation and Optimal Coagulation by Using Effluent of Sewage Treatment Plant in Busan

  • Jung, Jin-Hee;Choi, Young-Ik;Han, Young-Rip
    • 한국환경과학회지
    • /
    • 제22권10호
    • /
    • pp.1353-1361
    • /
    • 2013
  • The objectives of this paper are the characterization of the pretreatment of wastewater by microfiltration (MF) membranes for river maintenance and water recycling. This is done by investigation of the proper coagulation conditions, such as the types and doses of coagulants, mixing conditions (velocity gradients and mixing periods), pH, etc., using jar tests. The effluent water from a pore control fiber (PCF) filter located after the secondary clarifier at Kang-byeon Sewage Treatment Plant (K-STP) was used in these experiments. Two established coagulants, aluminum sulfate (Alum) and poly aluminum chloride (PAC), which are commonly used in sewage treatment plants to treat drinking water, were used in this research. The results indicate that the optimal coagulation velocity gradients (G) and agitation period (T) for both Alum and PAC were 200-250 $s^{-1}$ and 5 min respectively, but the coagulation efficiencies for both Alum and PAC were lower at low values of G and T. For a 60 min filtration period on the MF, the flux efficiencies ($J/J_0$ (%)) at the K-STP effluent that were coagulated by PAC and Alum were 92.9 % and 79.9 %, respectively, under the same coagulation conditions. It is concluded that an enhanced membrane process is possible by effective filtration of effluent at the K-STP using the coagulation-membrane separation process.

기존 합류식 하수관거에 CSO 제어를 위한 하수분리관의 설치에 관한 연구 (A Study on the Installation of a Sewage Separator Pipe inside an Existing Combined Sewer System for CSO Control)

  • 게라 하이디;김영철
    • 한국습지학회지
    • /
    • 제23권1호
    • /
    • pp.85-93
    • /
    • 2021
  • 유역으로부터 발생되는 강우유출수가 하수관거로 유입되는 것을 방지하기 위하여 별도의 우수전용관을 설치하는 것은 많은 비용이 수반되며 현장 시공여건에 따라 대단히 어려운 경우가 있다. 본 논문에서는 교통 및 도로 여건상 시공이 어려운 곳에 경제적인 접근방법으로 기존의 하수관거에 별도의 하수분리관을 설치하는 단순하면서 혁신적인 방안에 관한 연구결과를 제시하였다. 실험실 규모의 하수관거 실험장치를 통하여 얻은 결과에 따르면 기존의 관거를 하수 및 우수전용 공간으로 분리할 경우 관내유속을 증가시켜TSS, TCOD, TN, TP 퇴적율을 각각 74-88%, 79-90%, 75%, and 67-90%, 정도 감소시킬 수 있는 것으로 나타났다. 또한 3차원 수리유동 모의결과 하수분리관의 설치가 직선구간, 접속구간, 곡선 및 낙차구간에서 하수의 흐름 및 유속분포에 미치는 영향이 미미한 것으로 분석되었다. 그러나 접속구간에 분리관을 설치할 경우 접속면 지역은 유입되는 강우유출수의 운동에너지에 의한 구조물 훼손을 방지하기 위하여 보강해야 할 것으로 판단된다. 또한 곡선부에서 분리관은 곡선부의 안쪽보다는 외곽쪽에 설치하는 것이 구조적으로 안정 적인 것으로 분석된다. 이와 같은 연구결과를 바탕으로 폭 3 m 제원을 갖는 하수관거에는 약 0.4 m × 0.4 m 분리관 설치가 적합한 것으로 나타났다.

하수슬러지의 가스화 고형 잔재물의 순환자원으로서 물리적 선별에 의한 잠재성 검토 (Testing the Potential of Sewage Sludge Gasification Solid Residues as a Circulating Resource by Physical Separation)

  • 김동현;배성현;김성민;한성수;한요셉;권기운
    • 자원리싸이클링
    • /
    • 제33권3호
    • /
    • pp.48-56
    • /
    • 2024
  • 본 연구에서는 하수슬러지 가스화 고형 잔류물(GSRs)의 순환자원 활용 가능성을 검토하기 위해 대상제품에 대한 물성평가 및 물리적 분리를 수행하였다. 먼저, 본 연구에 사용된 GSRs는 수도권매립지관리공사를 통해 공급되었으며, 일반적으로 GSRs는 수 mm 입자크기의 다공성 펠릿 형태이었다. 또한, 부분적으로 검은 부분은 미연소 및 가스화되지 않은 탄소로 확인되었으며, 평균 탄소 함량은 5%였다. 또한 실리카, 알루미나, 산화인의 성분이 전체 함량의 70% 이상이었다. 습식분쇄 생성물은 금속성분이 단체분리되어있음 확인하였다. 금속성분과 비금속성분의 물리적 분리가 필요하여 최종적으로 부유선별에 적합한 것으로 결정하였다. 이에, 상대적으로 많은 양의 비금속성분이 농축된 금속 성분을 분리하기 위해 양이온 및 음이온 계면활성제를 선택하여 분리 특성을 확인하고자 하였다. 결과적으로, 금속성분 분리보다 실리카, 알루미나, 인 등 비금속 성분의 농축이 더 용이할 것으로 기대된다. 따라서, 가스화 처리된 하수슬러지 잔재물의 물리적 처리에 가능함에 따라 분리산물에 대한 재활용 방안 제안에 따라 순환자원으로서 잠재성이 있을 것으로 판단된다.