• Title/Summary/Keyword: severe malaria

Search Result 32, Processing Time 0.025 seconds

An Imported Case of Severe Falciparum Malaria with Prolonged Hemolytic Anemia Clinically Mimicking a Coinfection with Babesiosis

  • Na, Young Ju;Chai, Jong-Yil;Jung, Bong-Kwang;Lee, Hyun Jung;Song, Ji Young;Je, Ji Hye;Seo, Ji Hye;Park, Sung Hun;Choi, Ji Seon;Kim, Min Ja
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.6
    • /
    • pp.667-672
    • /
    • 2014
  • While imported falciparum malaria has been increasingly reported in recent years in Korea, clinicians have difficulties in making a clinical diagnosis as well as in having accessibility to effective anti-malarial agents. Here we describe an unusual case of imported falciparum malaria with severe hemolytic anemia lasting over 2 weeks, clinically mimicking a coinfection with babesiosis. A 48-year old Korean man was diagnosed with severe falciparum malaria in France after traveling to the Republic of Benin, West Africa. He received a 1-day course of intravenous artesunate and a 7-day course of Malarone (atovaquone/proguanil) with supportive hemodialysis. Coming back to Korea 5 days after discharge, he was readmitted due to recurrent fever, and further treated with Malarone for 3 days. Both the peripheral blood smears and PCR test were positive for Plasmodium falciparum. However, he had prolonged severe hemolytic anemia (Hb 5.6 g/dl). Therefore, 10 days after the hospitalization, Babesia was considered to be potentially coinfected. A 7-day course of Malarone and azithromycin was empirically started. He became afebrile within 3 days of this babesiosis treatment, and hemolytic anemia profiles began to improve at the completion of the treatment. He has remained stable since his discharge. Unexpectedly, the PCR assays failed to detect DNA of Babesia spp. from blood. In addition, during the retrospective review of the case, the artesunate-induced delayed hemolytic anemia was considered as an alternative cause of the unexplained hemolytic anemia.

Imported Malaria in Korea: a 13-Year Experience in a Single Center

  • Cheong, Hae-Suk;Kwon, Ki-Tae;Rhee, Ji-Young;Ryu, Seong-Yeol;Jung, Dong-Sik;Heo, Sang-Taek;Shin, Sang-Yop;Chung, Doo-Ryun;Peck, Kyong-Ran;Song, Jae-Hoon
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.3
    • /
    • pp.299-302
    • /
    • 2009
  • The incidence of imported malaria has been increasing in Korea. Were viewed data retrospectively to evaluate the epidemiology, clinical features, and outcomes of imported malaria from 1995 to 2007 in a university hospital. All patients diagnosed with imported malaria were included. Imported malaria was defined as a positive smear for malaria that was acquired in a foreign country. A total of 49 patients (mean age, 35.7 year; M: F = 38 : 11)were enrolled. The predominant malarial species was Plasmodium falciparum (73.5%), and the most frequent area of acquisition was Africa (55.1%), followed by Southeast Asia (22.4%) and South Asia (18.4%). Fourteen-patients (30.6%) suffered from severe malaria caused by P. falciparum and 1 patient (2.0%) died of multiorgan failure. Most of the patients were treated with mefloquine (79.2%) or quinine (10.2%); other antimalarial agents had to be given in 13.2% treated with mefloquine and 44.4% with quinine due to adverse drug events (ADEs). P. falciparum was the most common cause of imported malaria, with the majority of cases acquired from Africa, and a significant number of patients had severe malaria. Alternative antimalarial agents with lower rates of ADEs might be considered for effective treatment instead of mefloquine and quinine.

A 2 years-old Male with Malaria (2세 남아에서 발생한 토착형 삼일열 말라리아 1례)

  • Chung, Soo Jin;Yang, Yun Jung;Kim, Soon Ki;Hong, Young Jin;Son, Byong Kwan;Cho, Byong Won;Chung, Moon Hyun
    • Pediatric Infection and Vaccine
    • /
    • v.4 no.2
    • /
    • pp.293-297
    • /
    • 1997
  • Malaria, caused by any of four species of protozoan parasites of the genus Plasmodium, is charaterized by high fever, anemia and splenomegaly. Although malaria is a cause of significant morbidity and mortality worldwide, in Korea indigenous malaria has been believed to be eradicated by 1984. However, since the case report of native malaria in 1993, reported cases have been increased annually, reaching more than 300 cases in 1996. We experienced a 2 years-old male with fever, severe anemia and splenomegaly who resided in Inchon city. He had the history of travelling to the area (Yunchon) near western Demilitarized Zone for 1 month this summer. After more than 2 weeks without special attention, he was presented with pallor, anemia and splenomegaly. He was diagnosed to have malaria by Plasmodium vivax with the help of peripheral blood smears which showed various forms of malaria, i.e., ring form, trophozoites, shizonts and gametocytes. He was treated successfully with hydroxychloroquine and primaquine. We report this case with brief review of related literature.

  • PDF

A Case Study of a Soyangin Patient with Fever Pattern of Malaria by Acute Urticaria (급성 두드러기로 인한 학질양 발열을 보이는 소양인 치험례)

  • Kim, Ji-Hwan;Son, Han-Beom;Bae, Hyo-Sang;Park, Seong-Sik
    • Journal of Sasang Constitutional Medicine
    • /
    • v.26 no.1
    • /
    • pp.122-132
    • /
    • 2014
  • Objectives The purpose of this case study is to report the effect of Sasang constitutional therapy about chill and fever pattern of malaria by acute urticaria. Methods This Soyangin patient is treated by herbal prescriptions, venesection, and acupuncture therapy according to the change of symptoms. When fever is severe, adequate medical supportive treatments such as normal saline intravenous injection, sedative or anti-histamine are provided for the patient. Results & Conclusions The patient's symptoms of acute urticaria and general conditions were improved after using Yangdokbaekho-tang and Hwagam. However, chill and fever pattern of malaria was continued so that Hyungbangpaedok-san and Dokhwaljihwang-tang for Soyangin's lasting malaria symptom were medicated to the patient. Accordingly, chill and fever pattern lasting about one month was successfully eliminated after herbal treatment.

Possible Role of Heme Oxygenase-1 and Prostaglandins in the Pathogenesis of Cerebral Malaria: Heme Oxygenase-1 Induction by Prostaglandin $D_2$ and Metabolite by a Human Astrocyte Cell Line

  • Kuesap, Jiraporn;Na-Bangchang, Kesara
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.1
    • /
    • pp.15-21
    • /
    • 2010
  • Astrocytes are the most abundant cells in the central nervous system that play roles in maintaining the blood-brain-barrier and in neural injury, including cerebral malaria, a severe complication of Plasmodium falciparum infection. Prostaglandin (PG) $D_2$ is abundantly produced in the brain and regulates the sleep response. Moreover, $PGD_2$ is a potential factor derived from P. falciparum within erythrocytes. Heme oxygenase-1 (HO-1) is catalyzing enzyme in heme breakdown process to release iron, carbon monoxide, and biliverdin/bilirubin, and may influence iron supply to the P. falciparum parasites. Here, we showed that treatment of a human astrocyte cell line, CCF-STTG1, with $PGD_2$ significantly increased the expression levels of HO-1 mRNA by RT-PCR. Western blot analysis showed that $PGD_2$ treatment increased the level of HO-1 protein, in a dose- and time-dependent manner. Thus, $PGD_2$ may be involved in the pathogenesis of cerebral malaria by inducing HO-1 expression in malaria patients.

Analysis of gene expression profiles to study malaria vaccine dose efficacy and immune response modulation

  • Dey, Supantha;Kaur, Harpreet;Mazumder, Mohit;Brodsky, Elia
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.32.1-32.15
    • /
    • 2022
  • Malaria is a life-threatening disease, and Africa is still one of the most affected endemic regions despite years of policy to limit infection and transmission rates. Further, studies into the variable efficacy of the vaccine are needed to provide a better understanding of protective immunity. Thus, the current study is designed to delineate the effect of each dose of vaccine on the transcriptional profiles of subjects to determine its efficacy and understand the molecular mechanisms underlying the protection this vaccine provides. Here, we used gene expression profiles of pre and post-vaccination patients after various doses of RTS,S based on samples collected from the Gene Expression Omnibus datasets. Subsequently, differential gene expression analysis using edgeR revealed the significantly (false discovery rate < 0.005) 158 downregulated and 61 upregulated genes between control vs. controlled human malaria infection samples. Further, enrichment analysis of significant genes delineated the involvement of CCL8, CXCL10, CXCL11, XCR1, CSF3, IFNB1, IFNE, IL12B, IL22, IL6, IL27, etc., genes which found to be upregulated after earlier doses but downregulated after the 3rd dose in cytokine-chemokine pathways. Notably, we identified 13 cytokine genes whose expression significantly varied during three doses. Eventually, these findings give insight into the dual role of cytokine responses in malaria pathogenesis. The variations in their expression patterns after various doses of vaccination are linked to the protection as it decreases the severe inflammatory effects in malaria patients. This study will be helpful in designing a better vaccine against malaria and understanding the functions of cytokine response as well.

Two Imported Cases of Babesiosis with Complication or Co-Infection with Lyme Disease in Republic of Korea

  • Kwon, Hea Yoon;Im, Jae Hyoung;Park, Yun-Kyu;Durey, Areum;Lee, Jin-Soo;Baek, Ji Hyeon
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.6
    • /
    • pp.609-613
    • /
    • 2018
  • Babesiosis, caused by Babesia microti and B. divergens, is transmitted by Ixodid ticks. Symptoms of babesiosis vary from a mild flu-like illness to acute, severe, and sometimes fatal and fulminant disease. In Korea, 7 imported babesiosis cases and 1 endemic case have been reported. We report 2 cases of severe babesiosis initially mistaken as malaria. The first patient was complicated by shock and splenic infarction, the other co-infected with Lyme disease. As the population traveling abroad increases every year, physicians should be aware of babesiosis which mimics malaria, co-infection with other diseases, and its complications.

Genetic factors associated with development of cerebral malaria and fibrotic schistosomiasis

  • Hirayama, Kenji
    • Parasites, Hosts and Diseases
    • /
    • v.40 no.4
    • /
    • pp.165-172
    • /
    • 2002
  • Collaborative studies have identified some genetic factors contributing to the development of severe forms of malaria and schistosomiasis. In Thailand, the $TNF-{\alpha}{\;}5'-flanking$ region shows biallelic polymorphic sites at nucleotides -238, -308, -857, -863, and -1031, and seven alleles have been identified in patients from Myanmar. We found that the TNF promoter (TNFP)-D allele was significantly associated with cerebral malaria in populations from Karen (P < 0.0001. OR = 124.86) and ethnic Burma (P < 0.0001, OR = 34.50) . In China, we have identified two major genes related to the severity of liver fibrosis, one an HLA class II gene, and the other the IL-13 gene. The frequency of the HLA- DRB5*0101 allele and that of the IL-13 promoter A/A (IL- l3P- A/A) genotype were elevated in fibrotic patients, although the two genes are located on different chromosomes, chromosomes 6p and 5q, respectively Subjects with both genotypes had odds ratios (OR = 24.5) much higher than the sum of the ratios for each individual genotype (OR = 5.1,95% Confidence Interval 1.3-24.7 for HLA-DRB5*0101, OR = 3.1 95% CI 1.5 - 6.5 for IL-l3P-A/A). That the effects of the two susceptibility markers are synergistic rather than additive, strongly suggests that the pathogenic Th2 response directly influences the prognosis of post-schistosomal liver fibrosis.

Characterization of Plasmodium berghei Homologues of T-cell Immunomodulatory Protein as a New Potential Candidate for Protecting against Experimental Cerebral Malaria

  • Cui, Ai;Li, Yucen;Zhou, Xia;Wang, Lin;Luo, Enjie
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.101-115
    • /
    • 2019
  • The pathogenesis of cerebral malaria is biologically complex and involves multi-factorial mechanisms such as microvascular congestion, immunopathology by the pro-inflammatory cytokine and endothelial dysfunction. Recent data have suggested that a pleiotropic T-cell immunomodulatory protein (TIP) could effectively mediate inflammatory cytokines of mammalian immune response against acute graft-versus-host disease in animal models. In this study, we identified a conserved homologue of TIP in Plasmodium berghei (PbTIP) as a membrane protein in Plasmodium asexual stage. Compared with PBS control group, the pathology of experimental cerebral malaria (ECM) in rPbTIP intravenous injection (i.v.) group was alleviated by the downregulation of pro-inflammatory responses, and rPbTIP i.v. group elicited an expansion of regulatory T-cell response. Therefore, rPbTIP i.v. group displayed less severe brain pathology and feverish mice in rPbTIP i.v. group died from ECM. This study suggested that PbTIP may be a novel promising target to alleviate the severity of ECM.

Effect of Farnesyltransferase Inhibitor R115777 on Mitochondria of Plasmodium falciparum

  • Ha, Young Ran;Hwang, Bae-Geun;Hong, Yeonchul;Yang, Hye-Won;Lee, Sang Joon
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.421-430
    • /
    • 2015
  • The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (${\Delta}{\Psi}m$) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.