• 제목/요약/키워드: severe earthquake

검색결과 241건 처리시간 0.022초

Seismic design of structures using a modified non-stationary critical excitation

  • Ashtari, P.;Ghasemi, S.H.
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.383-396
    • /
    • 2013
  • In earthquake engineering area, the critical excitation method is an approach to find the most severe earthquake subjected to the structure. However, given some earthquake constraints, such as intensity and power, the critical excitations have spectral density functions that often resonate with the first modes of the structure. This paper presents a non-stationary critical excitation that is capable of exciting the main modes of the structure using a non-uniform power spectral density (PSD) that is similar to natural earthquakes. Thus, this paper proposes a new method to estimate the power and intensity of earthquakes. Finally, a new method for the linear seismic design of structures using a modified non-stationary critical excitation is proposed.

교량의 지진응답거동에 작용하는 액체점성감쇠기의 감쇠효과 분석 (Damping Effects of Fluid Viscous Dampers on the Seismic Response of Bridges)

  • 정상모;안창모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.379-386
    • /
    • 2001
  • Fluid viscous dampers have been used as energy dissipators or STU's (Shock Transmission Unit) in earthquake resistant designs for bridges. Viscous dampers have many advantages compared to other friction type or visco-elastic type of dampers. They do neither increase internal pier forces due to their out of phase response, nor produce reaction forces at the low velocities associated with thermal movements. Therefore, they anable the super structure to restore itself perfectly after a severe movement dut to seismic excitations. This paper investigates the response of bridges designed with viscous dampers in regard to damping coefficients, properties of dampers, and arrangements of dampers. For this purpose, time-history dynamic analyses have been performed using a very simple model relevant to a typical bridge example. Based on the results, it presents some design duidelines on how to determine a proper damping ratio and on how to arrange dampers. In usual cases, damping coefficients corresponding to about 0.2-0.3 of damping ratios seem to be very effective in bridge designs.

  • PDF

Experimental Study on Seismic Performance of Base-Isolated Bridge

  • Chung, Woo Jung;Yun, Chung Bang;Kim, Nam Sik;Seo, Ju Won
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.51-60
    • /
    • 1998
  • Base isolation is an innovative design strategy that provides a practical alternative for the seismic design of structures. Base isolators, mainly employed to isolate large structures subjected to earthquake ground excitations and to rehabilitate structures damaged by past earthquakes, deflect and absorb the seismic energy horizontally transmitted to the structures. This study demonstrated that the base isolation system may offer effective performance for bridges during severe seismic events through shaking table tests. Two base isolation systems using laminated rubber bearings with and without hydraulic dampers are tested. The test results strongly show that the laminate rubber bearings cause the natural period of the bridge structure increased considerably, which results in the deck acceleration and the shear forces on the deck acceleratino and the shear forces on the piers reduced significantly. The results also demonstrate that the hydraulic dampers enhance the system's capacity in dissipating energy to reduce the relative displacement between the bridge deck and the pier.

  • PDF

Identifying the hysteretic energy demand and distribution in regular steel frames

  • Akbas, Bulent;Shen, Jay;Temiz, Hakan
    • Steel and Composite Structures
    • /
    • 제6권6호
    • /
    • pp.479-491
    • /
    • 2006
  • Structures in seismic regions are designed to dissipate seismic energy input through inelastic deformations. Structural or component failure occurs when the hysteretic energy demand for a structure or component subject to an earthquake ground motion (EQGM) exceeds its hysteretic energy dissipation capacity. This paper presents a study on identifying the hysteretic energy demand and distribution throughout the height of regular steel moment resisting frames (SMRFs) subject to severe EQGMs. For this purpose, non-linear dynamic time history (NDTH) analyses were carried out on regular low-, medium-, and high-rise steel SMRFs. An ensemble of ninety EQGMs recorded on different soil types was used in the study. The results show that the hysteretic energy demand decreases from the bottom stories to the upper stories and for high-rise structures, most of the hysteretic energy is dissipated by the bottom stories. The decrease is quite significant, especially, for medium- and high-rise structures.

Ambient vibration tests of XV century Renaissance Palace after 2012 Emilia earthquake in Northern Italy

  • Cimellaro, Gian Paolo;De Stefano, Alessandro
    • Structural Monitoring and Maintenance
    • /
    • 제1권2호
    • /
    • pp.231-247
    • /
    • 2014
  • This paper focuses on the dynamic behaviour of Mirandola City Hall (a XV century Renaissance Palace) that was severely damaged during May 2012 Emilia earthquake in Northern Italy. Experimental investigations have been carried out on this monumental building. Firstly, detailed investigations have been carried out to identify the identification of the geometry of the main constructional parts as well as the mechanical features of the constituting materials of the palace. Then, Ambient Vibration Tests (AVT) have been applied, for the detection of the main dynamic features. Three output-only identification methods have been compared: (i) the Frequency Domain Decomposition, (ii) the Random Decrement (RD) and the (iii) Eigensystem Realization Algorithm (ERA). The modal parameters of the Palace were difficult to be identified due to the severe structural damage; however the two bending modes in the perpendicular directions were identified. The comparison of the three experimental techniques showed a good agreement confirming the reliability of the three identification methods.

1/12 축소 철근콘크리트 상부벽식-하부골조 건축물의 진동대 실험 (Shaking Table Tests of 1/12-Sale R.C. Bearing-Wall system with Bottom Piloti Frames)

  • 이한선;고동우;권기현;김병현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.407-414
    • /
    • 2001
  • The severe shortage of the available sites in the highly developed downtown area in Korea necessitates the construction of high-rise buildings which meet the need of residence and commercial activity simultaneously. The objective of this study is to investigate the seismic performance of this type of building structures. For this purpose, two 1 :12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have two different layouts of the plan The one is a moment-resisting frame system and the other is a moment-resisting frame system with a infilled shear wall. Then, this model was subjected to a series of earthquake excitations. The test results show that the existence of shear wall reduced the shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle.

  • PDF

P-$\Delta$ 효과를 고려한 철골 구조물의 비선형 동적거동 평가 (Evaluation of Nonlinear Dynamic Behavior for Steel Moment Frame Structures Considering P-$\Delta$ Effects)

  • 최원호;이주완;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.235-242
    • /
    • 2001
  • Inelastic seismic response of steel moment frame structures, which are usually quite gravity load and subject to large displacement under severe earthquake, may be severly influenced by the structure P-Δ effects. The P-Δ effect may have an important impact on the dynamic behavior of the structure in the nonlinear seismic analysis. In multi degree of freedom systems P-Δ effects may significantly affect only a subset of stories or a single story alone. Therefore, a story drift amplification of structure is happened by P-Δeffects and such nonlinear dynamic behaviors are very difficult to evaluate in the structures. In this study, two systems having different design methods of steel moment frame structures are investigated to evaluate the P-Δ effects due to gravity load. The plastic hinge formations, maximum rotational ductility demands, and energy distribution will be compared and evaluated following whether the P-Δ effects are considered or not. And design methods are proposed for the prevention of the instability of structures which due to the P-Δ effects.

  • PDF

고층 RC 벽식 비정형 구조물의 지진반응에 대한 비틀림 편심의 효과 (Effect of Torsional Eccentricity on the Seismic Response of High-Rise RC Bearing-Wall Structures with Vertical Irregularity)

  • 고동우;이한선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.145-150
    • /
    • 2003
  • The objective of this study is to investigate the effect of torsional eccentricity on the seismic response of high-rise RC bearing-wall structures with vertical irregularity. For this purpose, two 1:12 scale 17-story RC model structures, the one has concentric shear wall and the other has eccentric shear wall, were constructed and then subjected to a series of earthquake excitations. The test result shows the followings: 1) the layout of shear wall has the negligible effect on the natural period and the base shear coefficient, 2) the eccentric model behaves in the first and second mode while the concentric model has the first mode predominantly, 3) the stiff frame in the eccentric model resists most of overturning moment in the severe earthquake though both frames (the stiff and flexible frames) resist almost equally in the design earthquake.

  • PDF

현행 내진설계 규준에서 요구되는 수평강도의 평가 방법 (Method of Evaluation of the Strength Required in Current Seismic Design Code)

  • 한상환
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.193-200
    • /
    • 1997
  • Current seismic design code is based of the assumption that the designed structures would be behaved inelastically during a severe earthquake ground motion. For this reason, seismic design forces calculated by seismic codes are much lower than the forces generated by design earthquakes which makes structures responding elastically. Present procedures for calculating seismic design forces are based on the use of elastic spectra reduced by a strength reduction factors known as "response modificaion factor". Because these factors were determined empirically, it is difficult to know how much inelastic behaviors of the structures exhibit. In this study, base shear forces required to maintain target ductility ratio were first calculated from nonlinear dynamic analysis on the single degree of freedom system. And then, base shear foeces specified in seismic design code compare with above results. If the strength(base shear) required strength should be filled by overstrength and/or redundancy. Therefore, overstrength of moment resisting frame structure will be estimated from the results of static nonlinear analysis(push-over analysis).analysis).

  • PDF

반복재하 실험에 의한 고력볼트 철골 보 이음부의 내진거동 연구 (Cyclic Seismic Performance of High-Strength Bolted-Steel Beam Splice)

  • 이철호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.57-64
    • /
    • 1998
  • This paper presents the cyclic seismic performance of slip-critically designed, high-strength bolted-beam splice in steel moment frame. Before the moment connection reaching its plastic strength, unexpected premature slippage occurred at the slip-critically designed beam splice during the test. The experimentally observed frictional coefficients were as low as about 50% to 60% of nominal (code) value. Nevertheless, the bearing type behavior mobilized after the slippage transferred the increasing cyclic loads successfully, i.e., the consequence of slippage into bearing was not catastrophic to the connection behavior. The test result seems to indicate that the traditional beam splice design basing upon (bolt-hole deducted) effective flange area criterion may not be sufficient in developing the plastic strength of moment connections under severe earthquake loading. New procedure for achieving slip-critical beam splice design is proposed based on capacity design concept.

  • PDF