• Title/Summary/Keyword: settlement reduction

Search Result 214, Processing Time 0.025 seconds

An Experimental Study on Suppression of Cavity Development by Enlargement of Base Plate of Box-Culvert Installed at River Levee (하천제방 배수통문의 저판확폭을 통한 공동발생 억제기법 연구)

  • Kim, Jin-Man;Choi, Bong-Hyuck;Lee, Dae-Young;Jin, Young-Ji
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.55-61
    • /
    • 2011
  • Generally, the Box-Culvert in levee is destroyed by various reasons. Especially when Box-Culvert is installed over the pile foundation in soft ground, the failure occurrs for 1) the weakness of compaction in Box-Culvert side by the differential settlement between outer ground and inner soil prism, 2) hydraulic fracturing and disturbance of Box-Culvert side soil by the repeated acting of seepage pressure at flood time. Also the side of Box-Culvert is difficult to compact and the shear resistance is reduced by more than 1/3 for the reduction of friction caused by the difference of material property. In this study, a series of model tests are conducted for the analysis of the development mechanism of outer ground and inner soil prism by the differential settlement using the pile foundation in soft ground, and cavity suppressed technique is suggested by the analysis of base plate enlargement effect.

A Study on the Settlement Restraint of the Granular Compaction Pile (조립토 다짐말뚝의 침하저감방안에 관한 연구)

  • Kim, Seung-Wook;Lee, Duck-Won;Kim, Seo-Ryong;Ann, Jai-Gyoo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.336-342
    • /
    • 2005
  • Stone column or granular compaction pile have been used in widely during the several decades as a technique to reinforce soft cohesive soils and increase bearing capacity, accelerate consolidation settlement of the foundation soil. The bearing capacity of the granular compaction pile is governed mainly by the lateral confining pressure mobilized in the native soft soil to restrain bulging collapse of the granular pile. Therefore, the technique becomes unfeasible in soft, compressible clayey soils that do not provide sufficient lateral confinement. This paper presents the main results of numerical study of granular compaction pile which is partly mixed with lean concrete. 3D finite element analyses are performed with composite reinforced foundations by both granular compaction pile and partly mixed granular compaction pile with lean-mixed concrete.

  • PDF

Construction Stage Analysis of Structure Settlement Using Underpinning (언더피닝 공법을 이용한 구조물 침하에 대한 시공 단계 해석)

  • Lee, Jonghyop;Heo, Seungjin;Ok, Suyeol;Lim, Yunmook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.131-138
    • /
    • 2012
  • This paper aims to present accurately analytical modeling method for underpinning using uncertainty reduction, obtained from comparison between numerical analysis and Site measuring data during construction and service stages. Combination of various conditions should be considered for using numerical analysis to predict the behavior of the structure accurately, even though complexly considered the conditions, real construction should be secured the stability by applying the actual instrument measurement data because predicted results are including the considerable uncertainty. In order to secure the stability during construction, the real time instrument measurements together with numerical analysis results performed before construction state are complementary used actively. From the results of this study, the significant settlements are occurred not only in underpass structure of adjacent excavation area but also in the permanent steel pipe structures were analyzed. From the site measurement results of underpass settlement, the settlements are occurred in every stages of excavation, furthermore observed tendency is asymmetrical excavation patterns are settled more than symmetrical excavation patterns. The essential consideration points for numerical analysis are construction sequence, the direction of the existing facilities, the methods of elements modeling, the applied factors for nature of material and different results would be occurred depending upon inputting the above factors.

Liquefaction Prevention and Damage Reduction Effect of Reinforcement by Sheet Pile Using 1-G Shaking Table Test (1-G 진동대 실험을 이용한 시트파일 보강재의 액상화 및 피해 방지 효과)

  • Sim, Sung Hun;Yoon, Jong Chan;Son, Su Won;Kim, Jin Man
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.211-217
    • /
    • 2020
  • Earthquake preparedness has become more important with recent increase in the number of earthquakes in Korea, but many existing structures are not prepared for earthquakes. There are various types of liquefaction prevention method that can be applied, such as compaction, replacement, dewatering, and inhibition of shear strain. However, most of the liquefaction prevention methods are applied before construction, and it is important to find optimal methods that can be applied to existing structures and that have few effects on the environment, such as noise, vibration, and changes in underground water level. The purpose of this study is to estimate the correlation between the displacement of a structure and variations of pore water pressure on the ground in accordance with the depth of the sheet file when liquidation occurs. To achieve this, a shaking table test was performed for Joo-Mun-Jin standard sand and an earth pressure, accelerometer, pore water pressure transducer, and LVDT were installed in both the non-liquefiable layer and the liquefiable layer to measure the subsidence and excess pore water pressure in accordance with the time of each embedded depth. Then the results were analyzed. A comparison of the pore water pressure in accordance with Hsp/Hsl was shown to prevent lateral water flow at 1, 0.85 and confirmed that the pore water pressure increased. In addition, the relationship between Hsp/Hsl and subsidence was expressed as a trend line to calculate the expected settlement rate formula for the embedded depth ratio.

The Variation of Density and Settlement for Contaminated Sediments During Electrokinetic Sedimentation and Remediation Processes (오염퇴적토에 대한 동전기적 침전 및 정화 공정에서의 시료 밀도 및 침하 변화 특성)

  • Chung, Ha-Ik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.5-14
    • /
    • 2006
  • Generally, the sediments contain significant water, clay, colloidal fraction and contaminants, and can result in soft strata with high initial void, and its potential hazards in subsurface environments exist. Electrokinetic technique has been used in sedimentation for volume reduction of slurry tailing wastes and in remediation for extraction of contaminants from contaminated soils. In this research, the coupled effects of sedimentation and remediation of contaminated sediments are focused using electrokinetic sedimentation and remediation techniques from experimental aspects. A series of laboratory experiments including variable conditions such as initial solid content of the specimen, concentration level of the contaminant, and magnitude of applied voltage are performed with the contaminated sediment specimens mixed with ethylene glycol. Commercially available high specification Kaolin was used to simulate slurried sediment. From the test results, the settlement of specimen increases with increasing of applied voltage and decreasing of solid content and contamination level. The density of specimen increases due to settlement of specimen in the process of electrokinetic sedimentation and decreases due to extraction of organic contaminant in the process of electrokinetic remediation.

A Program Development for Prediction of Negative Skin Friction on Piles by Consolidation Settlement (압밀침하를 고려한 말뚝의 부마찰력 예측 프로그램 개발)

  • Kim, Hyeong-Joo;Mission, Jose Leo C.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.5-17
    • /
    • 2009
  • The microcomputer program PileNSF (Pile Negative Skin Friction) is developed by the authors in a graphical user interface (GUI) environment using $MATLAB^{(R)}$ for predicting the bearing capacity of a pile embedded in a consolidating ground by surcharge loading. The proposed method extends the one-dimensional soil-pile model based on the nonlinear load transfer method in OpenSees to perform an advanced one-dimensional consolidation settlement analysis based on finite strain. The developed program has significant features of incorporating Mikasa's finite strain consolidation theory that accounts for reduction in the thickness of the clay layer as well as the change of the soil-pile interface length during the progress of consolidation. In addition, the consolidating situation of the ground by surcharge filling after the time of pile installation can also be considered in the analysis. The program analysis by the presented method has been verified and validated with several case studies of long-term test on single piles subjected to negative skin friction. Predicted results of negative skin friction (downdrag and dragload) as a result of long from consolidation settlement are shown to be in good agreement with measured and observed case data.

Deformation Analysis of Shallow Tunnel Using Tunnel Model Test and Computational Analysis (모형시험과 수치해석을 이용한 저토피 터널의 변형거동에 관한 연구)

  • Lee, Jae-Ho;Kim, Young-Su;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • The control and prediction of surface settlement, gradient and ground displacement are the main factors in shallow tunnel design and construction in urban area. For deformation analysis of shallow tunnel due to excavation it is important to identify possible deformation mechanism of shear bands developing from tunnel shoulder to the ground surface. This paper investigaties quantitatively the deformation behavior of shallow tunneling by model tunnel test and strain softening analysis Incorporating the reduction of shear stiffness and strength parameters. The comparison of model tunnel test result and numerical simulation using strain softening analysis showed good agreement in crown settlement, normalized subsidence settlement and developing shear bands above tunnel shoulder. In this study, it is blown that the strain softening modeling is applicable to the nonlinear deformation analysis of shallow tunnel.

Ground Behavior and Reinforcing Methods of NATM Tunnel through Deep Weathered Zone (대심도 풍화대층에서 NATM 터널의 지반거동 및 보강방법)

  • Chun, Byung-Sik;Song, Seung-Hoon;An, Jung-Whan
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.87-95
    • /
    • 2007
  • This study analyzed ground settlement and ground stress depending on tunnel excavation and the ground reinforcing grouting methods for double line road tunnel through deep weathered zone. Diameter of double line road tunnel was approximately 12m and umbrella arch method and side wall reinforcing grouting were applied. The ring-cut split excavation method and CD-cut excavation method for excavation method were applied. Analyses of failure rate and vertical stress ratio show that the tunnel for which the height of the cover (H) was higher than four times the diameter, can be considered a deep tunnel. Comparisons of various excavation and ground reinforcement methods showed that CD-cut method results in lower surface and crown settlement, and lower failure rate than that obtained by Ring-cut split method. In addition, the side wall reinforcing grouting resulted in reduction of tunnel displacement and settlement.

Detection of Individual Trees in Human Settlement Using Airborne LiDAR Data and Deep Learning-Based Urban Green Space Map (항공 라이다와 딥러닝 기반 도시 수목 면적 지도를 이용한 개별 도시 수목 탐지)

  • Yeonsu Lee ;Bokyung Son ;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1145-1153
    • /
    • 2023
  • Urban trees play an important role in absorbing carbon dioxide from the atmosphere, improving air quality, mitigating the urban heat island effect, and providing ecosystem services. To effectively manage and conserve urban trees, accurate spatial information on their location, condition, species, and population is needed. In this study, we propose an algorithm that uses a high-resolution urban tree cover map constructed from deep learning approach to separate trees from the urban land surface and accurately detect tree locations through local maximum filtering. Instead of using a uniform filter size, we improved the tree detection performance by selecting the appropriate filter size according to the tree height in consideration of various urban growth environments. The research output, the location and height of individual trees in human settlement over Suwon, will serve as a basis for sustainable management of urban ecosystems and carbon reduction measures.

A Study on Consolidation Settlement Calculation of Cutting Soft Clay as Fill Material (절취 연약점성토의 성토재 활용에 따른 압밀침하량 산정에 관한 연구)

  • Yonghee Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.5-12
    • /
    • 2024
  • In the case of creating a site in the reclaimed land (public waters), due to the nature of the coastal sedimentary ground, large-scale construction materials are required, It is necessary to utilize soft clay, which is inevitably generated during construction of the complex, as a fill material in terms of resource recycling and economic aspects (reducing the amount of embankment required). In this study, changes in the consolidation characteristics of cut-out disturbed soft clay due to the recycling of soft clay soil were identified, and a consolidation settlement design plan was proposed. Through the results of the consolidation test of the study site, the change in consolidation characteristics (compression index reduction, precede load uncountable) due to disturbance (cutting) was confirmed, the method of calculating (consolidation settlement) the filling clay layer as the composite target layer (consolidation target layer, loading load layer) was analyzed as a result consistent with the actual behavior.