• Title/Summary/Keyword: setpoint

Search Result 102, Processing Time 0.026 seconds

Model-based Gain Scheduling Strategy for Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines (승용디젤엔진의 공연비 제어 알고리즘을 위한 모델기반 게인 스케줄링 전략에 대한 연구)

  • Park, Inseok;Hong, Seungwoo;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2015
  • This study presents a model-based gain scheduling strategy for PI-based EGR controllers. The air-to-fuel ratio is used as an indirect measurement of the EGR rate. In order to cope with the nonlinearity and parameter varying characteristics of the EGR system, we proposed a static gain model of the EGR system using a new scheduling parameter. With the 810 steady-state measurements, the static gain model achieved 0.94 of R-squared value. Based on the static gain of the EGR system, the PI gains were robustly designed using quantitative feedback theory. Consequently, the gains of the PI controller are scheduled according to the static gain parameter of the EGR path in runtime. The proposed model-based gain scheduling strategy was validated through various operating conditions of engine experiments such as setpoint step responses and disturbance rejections.

The level control of Steam Generator in Nuclear Power Plant by Neural Network-PI Controller (PI-신경망 제어기를 이용한 원자력 발전소용 증기 발생기 수위제어)

  • 김동화
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.6-13
    • /
    • 1998
  • It is difficult to control for the level of the steam generator in the nuclear power plant because there is swell and shrink, and many disturbance such as, feed water rate, feedwater temperature, main steam flow rte, coolant temperature effect steam generator level. If the conventional PI controller use in this system, we cannot have a stability in the control of the lower power, the rejection function of disturbance, and the load following effectively. In this paper, e study the application of the of neural network based Kp, Ti for Pi controller to the level control of the steam generator of nuclear power plant through the simulation and experimental on the steam generator. We are satisfied with the resulting against the inturrupt of the disturbance, the change of setpoint through the simulation and the swell and shrink, the response of controller on the experimental steam generator.

  • PDF

A Spiking Neural Network for Autonomous Search and Contour Tracking Inspired by C. elegans Chemotaxis and the Lévy Walk

  • Chen, Mohan;Feng, Dazheng;Su, Hongtao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2846-2866
    • /
    • 2022
  • Caenorhabditis elegans exhibits sophisticated chemotaxis behavior through two parallel strategies, klinokinesis and klinotaxis, executed entirely by a small nervous circuit. It is therefore suitable for inspiring fast and energy-efficient solutions for autonomous navigation. As a random search strategy, the Lévy walk is optimal for diverse animals when foraging without external chemical cues. In this study, by combining these biological strategies for the first time, we propose a spiking neural network model for search and contour tracking of specific concentrations of environmental variables. Specifically, we first design a klinotaxis module using spiking neurons. This module works in conjunction with a klinokinesis module, allowing rapid searches for the concentration setpoint and subsequent contour tracking with small deviations. Second, we build a random exploration module. It generates a Lévy walk in the absence of concentration gradients, increasing the chance of encountering gradients. Third, considering local extrema traps, we develop a termination module combined with an escape module to initiate or terminate the escape in a timely manner. Experimental results demonstrate that the proposed model integrating these modules can switch strategies autonomously according to the information from a single sensor and control steering through output spikes, enabling the model worm to efficiently navigate across various scenarios.

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

  • Jung, Jin-Woo;Dang, Dong Quang;Vu, Nga Thi-Thuy;Justo, Jackson John;Do, Ton Duc;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.753-762
    • /
    • 2015
  • This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.

Component Analysis of Thermally Activated Building System in Residential Buildings

  • Chung, Woong June;Lee, Yu Ji;Yoo, Mi Hye;Park, Sang Hoon;Yeo, Myoung Souk;Kim, Kwang Woo
    • Architectural research
    • /
    • v.16 no.4
    • /
    • pp.203-210
    • /
    • 2014
  • The packaged terminal air conditioner, the typical cooling system for the residential buildings, consumes a large amount of electricity in a short period time during peak hours. In order to reduce the peak load and conserve the electricity, the thermally activated building system can be used as a secondary system to handle the partial cooling load. However, the thermally activated building system may cause condensation and under-cooling. Thus, design of both systems should be performed with careful investigation in characteristics of both systems to amplify the advantages. Since the thermally activated building system has the time-delay effect which may cause under-cooling, the system is designed to handle the base load of the building. Hence, simple simulation with EnergyPlus was performed to observe the characteristics of cooling load in residential buildings. Once the possible range of the load handling ratio of the thermally activated building system was decided, characteristics of system was analyzed in terms of hardware component and operation parameters. The hardware components were analyzed in plant and system aspects and the operation parameter was evaluated in the thermal comfort aspect. As the load handling ratio increased, the thermal comfort increased due to the lower radiant mean temperatures. Within the range of thermal comfort, the several adjustments were made in setpoint temperature and electricity consumptions of difference cases were observed to decide which components and parameters were important for designing the systems.

DIAMETRAL CREEP PREDICTION OF THE PRESSURE TUBES IN CANDU REACTORS USING A BUNDLE POSITION-WISE LINEAR MODEL

  • Lee, Sung-Han;Kim, Dong-Su;Lee, Sim-Won;No, Young-Gyu;Na, Man-Gyun;Lee, Jae-Yong;Kim, Dong-Hoon;Jang, Chang-Heui
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.301-308
    • /
    • 2011
  • The diametral creep of pressure tubes (PTs) in CANDU (CANada Deuterium Uranium) reactors is one of the principal aging mechanisms governing the heat transfer and hydraulic degradation of the heat transport system (HTS). PT diametral creep leads to diametral expansion, which affects the thermal hydraulic characteristics of the coolant channels and the critical heat flux (CHF). The CHF is a major parameter determining the critical channel power (CCP), which is used in the trip setpoint calculations of regional overpower protection (ROP) systems. Therefore, it is essential to predict PT diametral creep in CANDU reactors. PT diametral creep is caused mainly by fast neutron irradiation, temperature and applied stress. The objective of this study was to develop a bundle position-wise linear model (BPLM) to predict PT diametral creep employing previously measured PT diameters and HTS operating conditions. The linear model was optimized using a genetic algorithm and was devised based on a bundle position because it is expected that each bundle position in a PT channel has inherent characteristics. The proposed BPLM for predicting PT diametral creep was confirmed using the operating data of the Wolsung nuclear power plant in Korea. The linear model was able to predict PT diametral creep accurately.

Application of Adaptive Control Theory to Nuclear Reactor Power Control (적응제어 기법을 이용한 원자로 출력제어)

  • Ha, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.336-343
    • /
    • 1995
  • The Self Tuning Regulator(STR) method which is an approach of adaptive control theory, is ap-plied to design the fully automatic power controller of the nonlinear reactor model. The adaptive control represent a proper approach to design the suboptimal controller for nonlinear, time-varying stochastic systems. The control system is based on a third­order linear model with unknown, time-varying parameters. The updating of the parameter estimates is achieved by the recursive extended least square method with a variable forgetting factor. Based on the estimated parameters, the output (average coolant temperature) is predicted one-step ahead. And then, a weighted one-step ahead controller is designed so that the difference between the output and the desired output is minimized and the variation of the control rod position is small. Also, an integral action is added in order to remove the steady­state error. A nonlinear M plant model was used to simulate the proposed controller of reactor power which covers a wide operating range. From the simulation result, the performances of this controller for ramp input (increase or decrease) are proved to be successful. However, for step input this controller leaves something to be desired.

  • PDF

Design of Multivariable 2-DOF PID for Electrical Power of Flow System by Neural Network Tuning Method (신경망 튜우닝에 의한 유량계통 동력 제어용 다변수 2-자유도 PID의 제어기 설계)

  • 김동화
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.78-84
    • /
    • 1998
  • The fluid system such as, the quantity control of raw water, chemicals control in the purification, the waste water system as well as in the feed water or circulation system of the power plant and the ventilation system is controlled with the valve and moter pump. The system's performance and the energy saving of the fluid systems depend on control of method and delicacy. Until, PI controller use in these system but it cannot control delicately because of the coupling in the system loop. In this paper we configure a single flow system to the multi variable system and suggest the application of 2-DOF PID controller and the tuning methods by the neural network to the electrical power of the flow control system. the 2-DOF controller follows to a setpoint has a robustness against the disturbance in the results of simulation. Keywords Title, Intelligent control, Neuro control, Flow control, 2 - DOF control., 2 - DOF control.

  • PDF

Modeling and Intelligent Control for Activated Sludge Process (활성슬러지 공정을 위한 모델링과 지능제어의 적용)

  • Cheon, Seong-pyo;Kim, Bongchul;Kim, Sungshin;Kim, Chang-Won;Kim, Sanghyun;Woo, Hae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1905-1919
    • /
    • 2000
  • The main motivation of this research is to develop an intelligent control strategy for Activated Sludge Process (ASP). ASP is a complex and nonlinear dynamic system because of the characteristic of wastewater, the change in influent flow rate, weather conditions, and etc. The mathematical model of ASP also includes uncertainties which are ignored or not considered by process engineer or controller designer. The ASP is generally controlled by a PID controller that consists of fixed proportional, integral, and derivative gain values. The PID gains are adjusted by the expert who has much experience in the ASP. The ASP model based on $Matlab^{(R)}5.3/Simulink^{(R)}3.0$ is developed in this paper. The performance of the model is tested by IWA(International Water Association) and COST(European Cooperation in the field of Scientific and Technical Research) data that include steady-state results during 14 days. The advantage of the developed model is that the user can easily modify or change the controller by the help of the graphical user interface. The ASP model as a typical nonlinear system can be used to simulate and test the proposed controller for an educational purpose. Various control methods are applied to the ASP model and the control results are compared to apply the proposed intelligent control strategy to a real ASP. Three control methods are designed and tested: conventional PID controller, fuzzy logic control approach to modify setpoints, and fuzzy-PID control method. The proposed setpoints changer based on the fuzzy logic shows a better performance and robustness under disturbances. The objective function can be defined and included in the proposed control strategy to improve the effluent water quality and to reduce the operating cost in a real ASP.

  • PDF

Optimal DO Setpoint Decision and Electric Cost Saving in Aerobic Reactor Using Respirometer and Air Blower Control (호흡률 및 송풍기 제어 기반 포기조 최적 DO 농도 설정과 전력 비용 절감 연구)

  • Lee, Kwang Su;Kim, Minhan;Kim, Jongrack;Yoo, Changkyoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.581-586
    • /
    • 2014
  • Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading.