• Title/Summary/Keyword: sessile

Search Result 155, Processing Time 0.025 seconds

Korean guidelines for postpolypectomy colonoscopic surveillance: 2022 revised edition

  • Su Young Kim;Min Seob Kwak;Soon Man Yoon;Yunho Jung;Jong Wook Kim;Sun-Jin Boo;Eun Hye Oh;Seong Ran Jeon;Seung-Joo Nam;Seon-Young Park;Soo-Kyung Park;Jaeyoung Chun;Dong Hoon Baek;Mi-Young Choi;Suyeon Park;Jeong-Sik Byeon;Hyung Kil Kim;Joo Young Cho;Moon Sung Lee;Oh Young Lee;Korean Society of Gastrointestinal Endoscopy;Korean Society of Gastroenterology;Korean Association for the Study of Intestinal Diseases
    • Clinical Endoscopy
    • /
    • v.55 no.6
    • /
    • pp.703-725
    • /
    • 2022
  • Colonoscopic polypectomy is effective in decreasing the incidence and mortality of colorectal cancer (CRC). Premalignant polyps discovered during colonoscopy are associated with the risk of metachronous advanced neoplasia. Postpolypectomy surveillance is the most important method for the management of advanced metachronous neoplasia. A more efficient and evidence-based guideline for postpolypectomy surveillance is required because of limited medical resources and concerns regarding colonoscopy complications. In these consensus guidelines, an analytic approach was used to address all reliable evidence to interpret the predictors of CRC or advanced neoplasia during surveillance colonoscopy. The key recommendations state that the high-risk findings for metachronous CRC following polypectomy are as follows: (1) adenoma ≥10 mm in size; (2) 3 to 5 (or more) adenomas; (3) tubulovillous or villous adenoma; (4) adenoma containing high-grade dysplasia; (5) traditional serrated adenoma; (6) sessile serrated lesion (SSL) containing any grade of dysplasia; (7) serrated polyp of at least 10 mm in size; and (8) 3 to 5 (or more) SSLs. More studies are needed to fully comprehend the patients most likely to benefit from surveillance colonoscopy and the ideal surveillance interval to prevent metachronous CRC.

The Effects of Protozoa on the Early Formation of Microbial Fouling Communities of Inchon Coastal Waters (인천 연안 미세오손생물 군집 형성과 원생동물의 영향)

  • Choi, Joong-Ki;Yang, Eun-Jin;Lee, Won-Je;Yoon, Won-Duk;Shim, Jae-Hyung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.349-362
    • /
    • 1999
  • To understand the role of protozoa in the early formation of microbial fouling community, the studies on the formation of microbial film, the succession of microbial fouling communities, and the grazing pressure on bacteria population in microbial film were carried out in the laboratory, Inchon outer port and Inchon inner harbour. Bacteria and heterotrophic flagellates formed primary microbial film on the aluminum surface within 6 hours and oligotrich ciliates were observed 2 cells $mm^{-2}$ on the same surface at 9 hours in Inchon inner harbour which had physically stagnant condition. The larvaes of Balanus albicostatus which were dominant meiobenthos in Inchon coastal area attached on the glass surface at the first day of experiment. Heterotrophic flagellates showed maximum abundance of 465 cells $mm^{-2}$ at the 13rd day and ciliates showed maximum abundance of 63 cells $mm^{-2}$ at the 11st day in the Inchon inner harbour. In the Inchon outer port which opens to the outer sea, the maximum abundance of protozoa occurred at early phase, but not so many. The dominant heterotrophic flagellates were Metrornonas simplex and Bodonids. Dominant ciliates were small tintinnids and oligotrich ciliate Strombidium sp., Large Strombidium (oligotrich ciliate) and sessile Acineta turberosa (suctorian ciliate) occurred after 10 days. The attached larvae of Balanus occurred as biofouling organism on the early surface and showed maximum abundance of 18 indiv. $cm^{-2}$ at 7th day. At that time, adult barnacles were observed on the surface and dead barnacles were observed after two days. Except barnacles, the larvaes of Anthozoa sp., Oysters (Crassostrea gigas) and Polychaeta were observed on the surface from 3rd day. 3 benthic copepods including Harpacticus sp., I isopod, 1 polychaeta and 1 gastropoda were observed as predators of the microbial film on the surface after 7 days when microbial film developed very well. Although the ingestion rates of protozoa on the bactctia of the rnicrobi31 film were relatively low, the average grazing rate of protozoa on bacteria was high of 0.058 $h^{-1}$. This implied that the grazing pressure of protozoa influences the mortality of bacteria populations on the microbial film. but protozoa cannot get enough energy from only bacteria on the microbial film.

  • PDF

Identification of Major Broad Leaved Weed Seedlings Based on Morphological Characteristics (주요 광엽잡초 유묘의 형태적 특성을 기초로 한 간이 식별법)

  • Kim, Chang-Seok;Chung, Young-Jae;Lee, In-Yong;Cho, Jung-Lai;Oh, Se-Mun;Park, Jae-Eup
    • Korean Journal of Weed Science
    • /
    • v.30 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • This study was conducted to develope identification method with major broad leaved weed seedlings. Characteristics of weed seedlings were investigated at two to four true leaf stage. Qualitative characteristics were more useful to identification of weed species than quantitative characteristics at the seedling stage. Many species were elliptic and broadly elliptic type in their cotyledon shape. Cotyledon shape of Cassia nomame and Calystegia sepium were broadly oblong. Four species were transverse broadly elliptic in their cotyledon shape. Rumex japonicus, Persicaria hydropiper, Euphorbia supina and Acalypha australis have three or more types in their cotyledon shape. Cotyledons of Vigna angularis var. nipponensis remained below ground after its germination. Many species were round in apex and were cuneate in base of cotyledon. Humulus japonicus and Polygonum aviculare were sessile in cotyledon base. The second true leaf shape of some species changed after first leaf stages. Glycine soja, V. angularis var. nipponensis and Kummerowia striata were broadly ovate, heart-shaped, orbicular or broadly obovate in their first true leaf, respectively, but the second true leaf shape of them were tripalmately compound. Aeschynomene indica and Cassia nomame were paripinnately compound leaf in their first and second true leaves. Margin of true leaves were entire in many species but six species including Xanthium occidentale were dentate in their true leaf margins. Margin of Euphorbia supina was entire in first true leaf and dentate in second true leaf. Margin of Chenopodium album and C. serotinum were entire in their first true leaf stage and erose in their second true leaf stage. The key for weed seedling identification of major weed species were made based on quantitative and qualitative morphological characteristics.

Structural Features of the Glandular Trichomes in Leaves of Carnivorous Drosera anglica Huds. (식충식물 긴잎끈끈이주걱 (Drosera anglica Huds.) 분비모의 구조적 특성)

  • Baek, Kyung-Yeon;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.38 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • Carnivorous plants vary in their unique features of morphology, ultrastructure and biochemical properties by species. Furthermore, prey-capturing mechanism as well as structural and physiological adaptations have been used for grouping various carnivorous species. In Drosera plants, glandular trichomes, which develop in the leaf epidermis, are known to play the most important role during the prey capturing process. The present study examined such trichomes, focusing on the glandular type, in leaves of Drosera anglica using scanning and transmission electron microscopy. Three types of rudimentary glandular trichomes were found to develop within the folded leaf primordia and immature leaf during early development. The first type, stalked glandular trichomes (Type I), occurred on the margin and upper epidermis of the leaf. With maturation, the longest glandular trichomes having lengthy stalks, ca. $2.2{\sim}5.1\;mm$, developed along the margin, while shorter stalked trichomes, ca. up to $200\;{\mu}m$, were found on the inner leaf blade. The shorter ones consisted of a globose head having two layers of secretory cells, parenchyma bell cells and tracheids and a multicellular stalk. The stalks gradually decreased in length in centripetal fashion. The second type, Type II, having ca. $15{\sim}30\;{\mu}m$ short stalks, also developed along the inner blade. Both types secreted mucilage from the secretory cells which had a thin cell wall and cuticle layer. The sessile six-celled glandular trichomes were the third type, Type III, and were $25{\sim}40\;{\mu}m$ in length. They were distributed most commonly throughout the upper and lower epidermis, petiole and even on the stalk surfaces of the first two types of trichomes. The third type was also found to be involved in the active secretion. In prey capturing leaves, all trichome types secreted substances through thin cuticles in the head cell wall, which exhibited relatively loose wall components.

Development of the Glandular Trichomes in Trapping Leaves of Drosera Species (끈끈이주걱속 점착식 포충엽의 분비모 발달)

  • Lee, Hye-Jin;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • The trapping leaves of Drosera capture insects by secreting sticky mucilage from numerous glandular trichomes (GTs) that are developed on the leaf epidermis. The present study examines and compares the structural features of those trichomes in Drosera binata and D. pygmy with the use of light and electron microscopy. The study focuses primarily on the development and differentiation pattern of the GTs during growth. Upon examination, the upper and lower epidermis were readily distinguishable by the features of GTs in developing leaves. In particular, the GTs were dense in the upper epidermis and along the leaf margin. In D. binata, the capitate GTs with elongated stalk and sessile peltate GTs were found most commonly, whereas only capitate GTs with varying degrees of the stalk length were observed in D. pygmy. Up to ca. $2.2{\sim}3.4\;mm$ long capitate GTs were seen in the leaf margins of D. binata and ca. $3.7{\sim}4.2\;mm$ long GTs having racket-like head with adaxial hemispheric structures, otherwise known as tentacles, were noted in the leaf margin of D. pygmy. The peltate GTs were found to be distributed in the lower epidermis of D. binata. In both species, head cells were dense with cytoplasm containing high numbers of Golgi bodies, ER, mitochondria and small vesicles. Secretory materials accumulated within numerous small vacuoles, then fused together to form a single large vacuole, which serves as a secretory cavity. Flection movement of the marginal GTs and leaf blade GTs, and increased mucilage secretion from the head cells upon contact with prey during the capturing process are considered to be major factors in their active insectivorous mechanism. The findings of this study will be useful in comparisons to similar findings in other species that form adhesive trapping leaves, such as Drosophyllum or Pinguicula., further contributing a better understanding of the function and structure of the trapping leaves of carnivorous plants.