• Title/Summary/Keyword: sesquiterpene synthase (STS)

Search Result 1, Processing Time 0.016 seconds

Isolation of Sesquiterpene Synthase Homolog from Panax ginseng C.A. Meyer

  • Khorolragchaa, Altanzul;Parvin, Shohana;Shim, Ju-Sun;Kim, Yu-Jin;Lee, Ok-Ran;In, Jun-Gyo;Kim, Yeon-Ju;Kim, Se-Young;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.34 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • Sesquiterpenes are found naturally in plants and insects as defensive agents or pheromones. They are produced in the cytosolic acetate/mevalonate pathway for isoprenoid biosynthesis. The inducible sesquiterpene synthases (STS), which are responsible for the transformation of the precursor farnesyl diphosphate, appear to generate very few olefinic products that are converted to biologically active metabolites. In this study, we isolated the STS gene from Panax ginseng C.A. Meyer, designated PgSTS, and investigated the correlation between its expression and various abiotic stresses using real-time PCR. PgSTS cDNA was observed to be 1,883 nucleotides long with an open reading frame of 1,707 bp, encoding a protein of 568 amino acids. The molecular mass of the mature protein was determined to be 65.5 kDa, with a predicted isoelectric point of 5.98. A GenBank BlastX search revealed the deduced amino acid sequence of PgSTS to be homologous to STS from other plants, with the highest similarity to an STS from Lycopersicon hirsutum (55% identity, 51% similarity). Real-time PCR analysis showed that different abiotic stresses triggered significant induction of PgSTS expression at different time points.