• Title/Summary/Keyword: sesame protein

Search Result 109, Processing Time 0.026 seconds

Studies on the Functional Properties of Sesame and Perilla Protein Isolate (참깨와 들깨 단백질의 기능성에 관한 연구)

  • Park, Hyun-Sook;Ahn, Bin;Yang, Cha-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.350-356
    • /
    • 1990
  • Functional properties such as nitrogen solubility, emulsifying property, foaming property, and water and oil absorption of sesame and perilla protein isolates were determined at pH range of 2-10 and ionic strength of 0-0.5M NaCl. Nitrogen solubility of protein isolates in distilled water showed minimum value at pH6.0 in sesame and at pH 4.0 in perilla and soybean protein isolates, and significantly increased above pH 8.0 in all samples. Addition of 0.1M NaCl solution increased nitrogen solubility, however, decreased in 0.5M NaCl solution. Emulsion activities of all the protein isolates showed minimum value at pH 4.0 and increased in 0.1M NaCl solutions while it was reduced in 0.5M NaCl solutions. The perilla protein isolate showed higher emulsion activity than that of soybean and sesame protein isolates at above pH 6.0. Foaming capacities of sesame and perilla protein isolates were lower than soybean protein isolate and generally all of the samples showed higher profiles in NaCl solutions. The foaming stability of soybean isolate decreased abruptly in 10min, while it was slowly decreased for sesame and perilla isolates during initial 30 min. Oil absorption capacity of perilla protein isolate was higher than that of sesame and soybean protein isolates. Water absorption capacity was similar among the three samples studied.

  • PDF

The Comparison in the Physicochemical Properties of Sesame Seeds by Producing Areas (산지에 따른 참깨종자의 이화학적 특성 비교)

  • Lee, Min-Jung;Kim, Ki-Hong
    • Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.128-131
    • /
    • 2005
  • Sesame seed is known as a good nutritional source containing high oil (51%) and protein (20%). Sesame oil contains a very high oxidative stability compared to other vegetable oils. To obtain basic information for quality evaluation, imported and domestic sesame seeds were investigated to measure general components (ash, protein, moisture and oil), fatty acid composition and lignan content. Although the protein contents were the highest in domestic sesame seeds, yet the lipid contents were the highest in imported sesame seeds. Unsaturated fatty acids such as oleic acid and linoleic acids were the highest in the domestic sesame seeds. Lignan contents, the most important component known as antioxidant, were significantly higher in domestic sesame seeds than other imported sesame seeds. These results suggest that domestic sesame seed may have the best quality in terms of the functional components.

functional Properties of Sesame Protein Concentrate as Degree of Hydrolysis by Enzyme Treatments (효소처리한 참깨박 농축단백질의 가수분해정도에 따른 기능성)

  • 윤시혜;박정륭;전정례
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.4 no.3
    • /
    • pp.87-96
    • /
    • 1994
  • This study was carried out to investigate the effect of hydrolysis by proteolytic enzymes on the functional properties of sesame protein concentrate. Sesame protein concentrate was hydrolyzed with papain, pepsin and trypsin to obtain 10% and 20% degree of hydrolysis. The nirogen solubility in water was increased with increasing the degree of hydrolysis. Bulk density was increased by enzymatic hydrolysis but water absorption capacity was increased only in the case of pepsin-hydrolyzed SPC. Higher fat absorption capacity was found in SPC with 10% DH than SPC with 20% DH. Emulsifying activity was also increased by enzymatic hydrolysis except SPC with 10% DH by papain.

  • PDF

Functional properties of protein from defatted sesame meal using the enzyme from Bacillus sp. CW-1121 (Bacillus sp. CW-1121이 생성하는 효소를 처리한 참깨박 단백질의 기능성)

  • Choi, C.;Chun, S.S.;Cho, Y.J.
    • Applied Biological Chemistry
    • /
    • v.36 no.3
    • /
    • pp.172-177
    • /
    • 1993
  • To extract insoluble proteins from sesame meal residue by microorganism, the sesame meal residue was treated with crude enzyme solution of Bacillus sp. CW-1121. The foaming capacity of salt soluble protein was quite lower than that of water soluble protein and the foaming stability of salt soluble protein decreased abruptly in 10 min., while it sustained for 30 min in case of water soluble protein. Emulsion capacities of all the protein fractions showed minimum value near isoelectric point of protein and salt soluble protein had lower emulsion capacities than that of water soluble protein. The emulsion stability of the protein was relatively stable for 30 min at $80^{\circ}C$. Oil and water absorption capacities of salt soluble protein were higher than those of water soluble protein.

  • PDF

Antitumor Activity of Crude Sesaminol in Sesame Seed

  • Ryu, Su-Noh;Lee, Bong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.3
    • /
    • pp.168-171
    • /
    • 1998
  • Sesaminol in sesame seed was postulated to have antitumor activity. The present study was performed to characterize the role of crude sesaminol extracted from sesame seed (Sesame Crude Sesaminol; SCS) on inhibiting the in vitro growth of human leukemia HL-60 cells. SCS inhibited the growth of human leukemia HL 60 cells in culture and macromolecular synthesis in a dose and time dependent manner. The cytostatic range of SCS concentration was found to be 60 to 100 $\mu\textrm{g}$/ml. SCS concentration greater than 200 $\mu\textrm{g}$/mlwere cytocidal to HL-60 cells. When SCS concentraction was 6 $\mu\textrm{g}$/mland 50 $\mu\textrm{g}$/ml the synthesis of HL-60 cells was inhibited by 35% for DNA, 6% for RNA and 5% for protein and 83% for DNA, 76% for RNA and 60% for protein. Of specific interest was the irreversible effect of SCS in inhibiting DNA synthesis of HL-60 cells. This was evidenced from the fact that, even after washed with PBS three times, preincubated HL-60 cells still showed the inhibited DNA synthesis.

  • PDF

The Effect of Protein Extraction pH on the Functional Properteis of Seasame Protein Concentrates (단백질 추출 pH가 참깨 농축단백질의 기능적 특성에 미치는 영향)

  • 박정륭;김은정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.4
    • /
    • pp.619-624
    • /
    • 1995
  • Sesame protein concentrate(SPC) was prepared from defatted sesame flour(DSF) at several different pH(2.0, 7.0, 9.0, 11.0) for protein extraction. Some of their functional properties were determined in order to compare the effects of pH during preparation of concentrates. Compared with DSF, nitrogen solubility was markedly improved in all SPC, and SPC extracted at pH 11.0 showed the highest solubility at all pH leaves examined. Fatabsorption was increased in all SPC prepared, but water absorption was decreased as the extraction pH of protein increased. The emulsifying properteis and foaming properties of SPC were remarkably higher than DSF. As the extraction pH of protein was increased, the emulsion activity was also increased, but emulsion stability was decreased. SPC extracted at pH 7.0 showed the highest foaming capacity on the other hand, the highest foaming stability was shown in SPC extracted at pH 2.0. As the protein extraction pH increased, the viscosity of the protein solution was increased. SPC extracted at pH 11.0 showed highest viscosity at all protein concentrations tested.

  • PDF

Change of Physical Properties and Extraction of Sesame Meal Protein by Gamma Irradiation (방사선 조사에 의한 참깨박 단백질의 용출 및 기능성 변화)

  • Cho, Young-Je;Kim, Jin-Ku;Cha, Won-Seup;Park, Joon-Hee;Oh, Sang-Lyong;Byun, Myung-Woo;Chun, Sung-Sook;Kim, Soon-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.924-930
    • /
    • 1999
  • To extract insoluble proteins and improve physical properties of proteins, the sesame meal proteins was irradiated with $5\;kGy{\sim}20\;kGy$ at room temperature. The highest extraction rate of sesame meal protein was showed at irradiation dose of 5 kGy. The foaming capacity, foaming stability, emulsion capacity and emulsion stability of gamma irradiated sesame meal protein (GISP) were all increased as compared to those of the non-irradiated protein. Water absorption capacity of GISP was similar to that of non-irradiated protein and oil absorption capacity of GISP was decreased after treatment by gamma irradiation.

  • PDF

Change of Functional Properties and Extraction of Sesame Meal Protein with Phytase and Protease (Phytase와 Protease 혼합처리에 의한 참깨박 단백질 용출 및 기능성 변화)

  • Chun, Sung-Sook;Cho, Young-Je;Cho, Kuk-Young;Choi, Cheong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.895-901
    • /
    • 1998
  • To extract insoluble proteins and improve functional properties of sesame meal proteins was treated with phytase and protease from Aspergillus sp. It was found that the optimum pH, optimum temperature, optimum treatment time and optimum unit of enzyme for extraction of protein were pH $10{\sim}12$ (alkaline), $60^{\circ}C$, 11 hr. and 900 units of phytase and 60 units of protease, respectively. The foaming capacity, foaming stability, oil absorption and water absorption of sesame meal protein after treatment with phytase and protease were increased as compared to the control.

  • PDF

Current Status and Prospects of Quality Evaluation in Sesame (참깨의 품질평가 현황과 전망)

  • 류수노;김관수;이은정
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.140-149
    • /
    • 2002
  • Sesame (Sesamum indicum L.) is probably the most ancient oilseed crop known in the world. Sesame seed is known for its high nutritional value and for having oil (51%) and protein (20%) content. The fatty acid composition of sesame oil is palmitic acid (7.8%), stearic acid (3.6%), oleic acid (45.3%), and linoleic acid (37.7%). Sesame oil is characterized by a very high oxidative stability compared with other vegetable oils. Two lignan-type compounds, sesamin and sesamolin, are the major constituents of sesame oil unsaponifiables. Sesamol (a sesamolin derivative) can be present in sesame seeds and oils in very small amount. Other lignans and sesamol are also present in sesame seeds and oils in very small amount as aglycones. Lipid oxidation activity was significantly lower in the sesamolin-fed rats, which suggests that sesamolin and its metabolites contribute to the antioxidative properties of sesame seeds and oil and support that sesame lignans reduce susceptibility to oxidative stress. Sesaminols strongly inhibit lipid peroxidation related to their ability to scavenge free radical. The sesame seed lignan act synergistically with vitamin I in rats fed a low $\alpha$-tocopherol diet and cause a marked increase in a u-tocopherol concentration in the blood and tissue of rats fed an $\alpha$-tocopherol containing diet with sesame seed or its lignan. The authors are reviewed and discussed for present status and prospects of quality evaluation and researched in sesame seeds to provide and refers the condensed informations on their quality.

Chemical and Nutritional Studies on Sesamum indicum - I. Effects on the Quality of Sesame Oil and its Meal by Decortication - (참깨에 대한 식품영양학적인 연구 - 제1보 탈피(脫皮)과정이 참기름 및 박(粕)의 품질에 미치는 영향 -)

  • Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.113-118
    • /
    • 1973
  • In this study, the several chemical compositions, which include general components (moisture, fat, protein, sugar, fiber, ash, acid insoluble ash), minor components (sesamol, sesamolin, sesamin), the characteristics of oil (specific gravity, refractive index, iodine value, saponification value, unsaponificable matter, insoluble impurities), fatty acid components (analyzed by GLC), amino acid patterns (analyzed by autoanalyzer), of Korean whole white Sesamum indicum were investigated and were compared with decuticled sesame samples. The results were summarized as follows: 1) The crude fiber, total ash and acid insoluble ash contents of the decuticled sesame seed and it meal were significantly lower as compared to the whole sesame samples. 2) The specific gravity, refractive index, iodine value, unsaponificable matter and insoluble impurities contents of the whole sesame oil were greater than the decuticled samples. 3) The fatty acid contents of the whole and decuticled sesame oil were approximatly equal amounts. But unsaturated fatty acid contents of the decuticled sesame oil was significantly lower than the whole sesame oil. 4) The decuticled sasame meal was concentrated higher protein than the whole sasame meal. But amino acid contents of the protein in their was approximatly equal amounts and sesame proteins are found to be rich in methionine, cystine and tryptophan, they are deficient in lysine. 5) The sesamol, sesamolin and sesamin contents of the whole and decuticled sesame oil were approximatly equal amounts. 6) The oxalate and calcium contents of the decuticled sesame seed and its meal were also significantly lower as compared to the whole sesame samples.

  • PDF