• Title/Summary/Keyword: sesame germplasm

Search Result 12, Processing Time 0.045 seconds

Development and Evaluation of Core Collection Using Qualitative and Quantitative Trait Descriptor in Sesame (Sesamum indicum L.) Germplasm

  • Park, Jong-Hyun;Suresh, Sundan;Raveendar, Sebastin;Baek, Hyung-Jin;Kim, Chung-Kon;Lee, Sokyoung;Cho, Gyu-Taek;Ma, Kyung-Ho;Lee, Chul-Won;Chung, Jong-Wook
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • Sesame (Sesamum indicum L.) is one of the most important oilseed crops with high oil contents and rich nutrient value. The development of a core collection could facilitate easier access to sesame genetic resources for their use in crop improvement programs and simplify the genebank management. The present study was initiated to the development and evaluation of a core collection of sesame based on 5 qualitative and 10 quantitative trait descriptors on 2,751 sesame accessions. The accessions were different countries of origin. About 10.1 percent of accessions were selected by using the power core program to constitute a core collection consisting of 278 accessions. Mean comparisons using t-test, Nei's diversity index of 10 morphological descriptors and correlation coefficients among traits indicated that the existing genetic variation for these traits in the entire collection has been preserved in the core collection. The results from this study will provide effective information for future germplasm conservation and improvement programs in sesame.

Characterization of Agronomic Traits and Evaluation of Lignan Contents in Asian and African Sesame (Sesamum indicum L.) Germplasms (아시아 및 아프리카 원산 참깨(Sesame indicum L.) 유전자원의 농업형질과 리그난 함량 평가)

  • Sookyeong Lee;Jungsook Sung;Gi-An Lee;Eunae Yoo;So Jeong Hwang;Weilan Li;Tae-Jin Yang
    • Korean Journal of Plant Resources
    • /
    • v.36 no.4
    • /
    • pp.413-434
    • /
    • 2023
  • Sesame (Sesamum indicum L.) is an ancient oilseed crop, which is usually cultivated for its seeds. Sesame breeding aims to achieve high seed yield and quality, along with resistance to biotic or abiotic stresses. It is estimated that sesame is originated from Asia or Africa continent. In this study, we characterized 10 agronomic traits and evaluated lignan contents in 165 sesame germplasm originated from Asia or Africa, to select high-yield or high-lignan content accessions. Sesame germplasm showed diverse phenotypes and highly variable lignan contents (sesamin: 0.5-12.6 mg/g, sesamolin: 0.1-3.5 mg/g, lignan: 1.1-16.1 mg/g). Based on originated continent, there are significant difference in agronomic traits, but no in lignan content. Correlation analysis revealed that yield-related agronomic traits were negatively related with lignan contents. Also, PCA analysis showed that most agronomic traits and lignan contents were principal components explaining diversity of whole sesame germplasm. Sesame germplasm was clustered into three groups based on agronomic traits and lignan contents. Finally, we selected high-yield (IT29416, IT167042, K276848, K276849) and high-lignan candidate accessions (IT169254, IT170031, IT169250, IT154876, IT170034), respectively. These accessions are expected to be valuable resources for breeding of high-yield and high-lignan contents functional cultivars.

Perspectives of Utilization and Function of Antioxidants in Sesame (참깨 항산화물질의 기능과 함량 및 이용 전망)

  • Ryu Su Noh;Kang Chul Whan;Lee Jung Il;Lee Seung Tack;Kim Kwan Su;Ahn Byung Og
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.spc1
    • /
    • pp.94-109
    • /
    • 1996
  • Antioxidants of sesame have been reported to cure and prevent various diseases by means of diverse physiological activities, prevention of acidification in organisms, prevention of acidification and decay of lipids, cholesterol depression, preventive effects on chemical breast cancer, skin beauty and senescence inhibition, and so on. Recognizing their significance to health and disease prevention, researchers in Japan and America have given so much importance to study antioxidants in the last decade. In addition, they are actively pursuing studies on production, processing for food use and development of new varieties that have high antioxidant content. Recently, researchers in Korea have shown the same interest and have conducted similar studies, however, the importance of the following basic issues must be recognized to guide in future activites : First, improvement of sesame quality must be done to raise the contents of not only the fat and fatty acid but also sesamin, sesamolin and sesaminol glucoside. For the use of these components it is necessary to study the gentic pattern and individual selections developed from minimum sample size and fast lipid analysis techniques. Second, sesaminol of sesame has a remarkable function in preventing acidification and so sesame can be utilized as a food that prevents or delays aging caused by automatic acidification of fat. Therefore, for maximum medicinal benefit from sesame oil there is a need to develop food materials having new medicinal functions. Third, the sesamin and sesamolin content of sesame germplasms collected in Korea showed lower ranges of $0.04\~0.68$ percent and $0.08\~0.68$ percent respectively, while Japanese germ-plasm showed 1.9 percent maximum content of seasmin. Thus, germplasm collection and analysis of worldwide genetic resources are urgently needed.

  • PDF

Determination of Sesamin and Sesamolin in Sesame (Sesamum indicum L.) Seeds Using UV Spectrophotometer and HPLC

  • Kim, Kwan-Su;Lee, Jung-Ro;Lee, Joon-Seol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.1
    • /
    • pp.95-100
    • /
    • 2006
  • Sesamin and sesamolin, antioxidant lipidsoluble lignan compounds, are abundant in sesame (Sesamum indicum L.) seed oil and provide oxidative stability of oil related to sesame quality. The sesamin and sesamolin contents of 403 sesame land races of Korea were determined by HPLC analysis of methanol extract (HPLC value), and their total lignan content was compared with those by using UV-Vis spectrophotometric analysis (UV method) of methanol (UV-MeOH value) and hexane (UV-Hexane value) extracts. HPLC values of total lignan content were strongly associated with UV-Hexane (r=0.705**) and UV-MeOH (r=0.811**) values. The UV values from both the extracts were 3.8-4.7 times higher than those of HPLC values. Lignan content was overestimated by UV method because total compounds in the mixture solution were quantified by absorbing at the same ultraviolet wavelength as in HPLC method. UV method could more rapidly analyze small amount of sample with higher sensitivity of detection than HPLC method. Average contents of lignans in sesame germplasm evaluated in this study were $2.09{\pm}1.02mg/g$ of sesamin, and $1.65{\pm}0.61mg/g$ of sesamolin, respectively, showing significant variation for lignan components. The results showed that UV method for the determination of sesamin and sesamolin could be practically used as a faster and easier method than HPLC by using the regression equations developed in this study.

Use of Near-Infrared Spectroscopy for Estimating Lignan Glucosides Contents in Intact Sesame Seeds

  • Kim, Kwan-Su;Park, Si-Hyung;Shim, Kang-Bo;Ryu, Su-Noh
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.185-192
    • /
    • 2007
  • Near-infrared spectroscopy(NIRS) was used to develop a rapid and efficient method to determine lignan glucosides in intact seeds of sesame(Sesamum indicum L.) germplasm accessions in Korea. A total of 93 samples(about 2 g of intact seeds) were scanned in the reflectance mode of a scanning monochromator, and the reference values for lignan glucosides contents were measured by high performance liquid chromatography. Calibration equations for sesaminol triglucoside, sesaminol($1{\rightarrow}2$) diglucoside, sesamolinol diglucoside, sesaminol($1{\rightarrow}6$) diglucoside, and total amount of lignan glucosides were developed using modified partial least square regression with internal cross validation(n=63), which exhibited lower SECV(standard errors of cross-validation), higher $R^2$(coefficient of determination in calibration), and higher 1-VR(ratio of unexplained variance divided by variance) values. Prediction of an external validation set(n=30) showed a significant correlation between reference values and NIRS estimated values based on the SEP(standard error of prediction), $r^2$(coefficient of determination in prediction), and the ratio of standard deviation(SD) of reference data to SEP, as factors used to evaluate the accuracy of equations. The models for each glucoside content had relatively higher values of SD/SEP(C) and $r^2$(more than 2.0 and 0.80, respectively), thereby characterizing those equations as having good quantitative information, while those of sesaminol($1{\rightarrow}2$) diglucoside showing a minor quantity had the lowest SD/SEP(C) and $r^2$ values(1.7 and 0.74, respectively), indicating a poor correlation between reference values and NIRS estimated values. The results indicated that NIRS could be used to rapidly determine lignan glucosides content in sesame seeds in the breeding programs for high quality sesame varieties.

  • PDF

Variation of Lignan Content for Sesame Seed Across Origin and Growing Environments (참깨 원산지 및 재배지역에 따른 리그난 함량 변이)

  • Kim, Sung-Up;Oh, Ki-Won;Lee, Myoung-Hee;Lee, Byoung-Kyu;Pae, Suk-Bok;Hwang, Chung-Dong;Kim, Myung-Sik;Baek, In-Youl;Lee, Jeong-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.151-161
    • /
    • 2014
  • Sesame lignan, including sesamin and sesamolin has been reported to have various content according to accessions and environmental factors. The objective of this study were to analyze the lignan variation of 143 sesame accessions from core collection in Korea and to test the effects of growing years and locations on lignan and lipid content of Korea sesame elite lines. The results showed that the core sesame germplasm in Korea has broad variation of lignan content from 2.33 to 12.17 mg/g with an average 8.18 mg/g. Among tested sesame accessions, the IT184615 had the highest lignan content of as 12.17 mg/g. So this accession will be a good genetic resource for developing a high lignan sesame variety. The sesamin and sesamolin content for sesame accessions across origin had significant difference. The average lignan content of accessions collected from Russia (10.0 mg/g) and Nepal (9.08 mg/g) were relatively higher than other countries. The sesamin and sesamolin content for sesame accessions across seed coat color had significant difference. The average lignan content of sesame with white, brown and black seed coat color was 8.61, 7.51, and 5.49 mg/g, respectively. The variation of lignan and lipid content was significantly different across elite lines, locations and growing years. Therefore, it is important to find sesame accessions having high lignan content with environmental stability.

Occurrence of Root-knot Nematodes on Fruit Vegetables Under Greenhouse Conditions in Korea (과채류 시설재배지의 뿌리혹선충 문제)

  • 김동근
    • Research in Plant Disease
    • /
    • v.7 no.2
    • /
    • pp.69-79
    • /
    • 2001
  • Meloidogyne arenaria race 2 (59%) is widely distributed, followed by M. incognita race 1 (23%), and an unknown race of M. incognita (18 %) in greenhouses in southern Korea. The key character to distinguish between M. arenaria and M. incognita is excretory pore in female head. When oriental melon, Cucumis melo L., grafted on Shintozoa (Cucurbit maxima x Cu. moschata) is transplanted in February in a plastic tunnel inside a greenhouse infested with M. arenaria, nematodes produced egg masses on roots at 40 days after transplanting and the soil juveniles (J2) population reach maximum in July to 3,817/100 ㎤. Juveniles are distributed relatively uniform over the 180-cm-wide row horizontally and the highest density occurs at 0-25 cm soil depth. For the control of root-knot nematodes, rice rotation, solarization, and soil addition treatments are the most effective (P=0.05); treatments reduce number of J2 over 90% and increase yield two times. Corn retation, fosthiazate, and soil drying treatment are moderately effective, while sesame and green onion rotations are not effective. The relationship between M. arenaria and yield of oriental melon is adequately described by a linear regression model. In the test with wild Cucumis genetic sources introduced from U.S.Dept. of Agriculture (USDA), one of C.heptadactylus, two of C.anguria, two of C. anguria var. longaculeatus, nine of C. metuliferus are resistant to both species of root-knot nematodes.

  • PDF