• Title/Summary/Keyword: servo-control

Search Result 1,728, Processing Time 0.029 seconds

Design of Force Control System for a Hydraulic Road Simulator using QFT (QFT 를 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Nan, Yang-Hai;Kim, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1109-1114
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.

  • PDF

Design of Force Control System for a Hydraulic Road Simulator Using Quantitative Feedback Theory (정량적 피드백 이론을 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1069-1076
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT(Quantitative Feedback Theory) is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. Tracking specification is satisfied with upper and lower bound tolerances on the steep response of the system to the reference signal. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.

Experimental Study on Control of Autopilot System(I) (자동운항시스템의 제어에 관한 실험적 연구)

  • Han, Bong-Ju;Bae, Gyeong-Su;Kim, Hwan-Seong;Kim, Sang-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2449-2457
    • /
    • 1996
  • This paper presents a design method for autopilot control system in course change to the specified direction based on a robust digital servo controlmelthod incorporating the concept of the annihilator polynormial. The mathematicalmodel of ship turning motion is very complex in the view of practical control because it has time varying parameters, nonlinear and dead time terms. To apply the digital servo control method based on computer control, the model is linearized at an equilibrium point and discretized with appropriate sampling time. The control algorithm was evaluated on the basis of computer simulation for a model ship and the practical experiment was carried out with an image processing method for measurement of ship position in a water tank. The results of overall experiments show that the proposed control method will be one of good way to keep a track plotted in the map.

Measurement and Analysis for Positioning Control Characteristics using Encoder Signal of NC Machine Controller (공작기계용 NC제어기의 엔코더 신호를 이용한 위치제어 특성 측정 및 분석)

  • Kim Jong-Gil;Lee Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.311-317
    • /
    • 2005
  • NC controller parameters are fixed when the controller is combined with a machine. However, the characteristics of controller could be changed as it has being used by the machine or other environmental conditions. Ultimately, it results in tool positioning accuracy changing. The loading torque in servo motor also influences on the positioning accuracy. This study focus on a measuring and analysing method for verifying the angular positioning accuracy of NC servo motor. We used a high resolution A/D converter for acquiring analogue signal of rotary encoder in servo motor. Generating tool path by the combination of axial movements (X,Y,Z) is compared with the encoder signals with the servo motor torque. The current variation signal is also read from the servo motor power using a hall sensor and converted to the motor torque. The method of analysing proposed in this study will be used for determining the gains (tuning) of parameter in NC controller, when the controller is set up at a machine initially or the controller condition is changed during the work.

Kalman Filter Estimation of the Servo Valve Effective Orifice Area for a Auxiliary Power Unit (보조 동력장치용 서보밸브 유효 오리피스 면적의 칼만필터 추정)

  • Zhang, J.F.;Kim, C.T.;Jeong, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Flow rate is one of the important variables for precise motion control and detection of the faults and fluid loss in many hydraulic components and systems. But in many cases, it is not easy to measure it directly. The orifice area of a servo valve by which the fluid flows is one of key factors to monitor the flow rate. In this paper, we have constructed an estimation algorithm for the effective orifice area by using the model of a servo valve cylinder control system and Kalman filter algorithm. Without geometry information about the servo valve, it is shown that the effective orifice area can be estimated by using only displacement and pressure data corrupted with noise. And the effect of the biased sensor data and system parameter errors on the estimation results are discussed. The paper reveals that sensor calibration is important in accurate estimation and plausible parameter data such as oil bulk modulus and actuator volume are acceptable for the estimation without any error. The estimation algorithm can be used as an useful tool for detecting leakage, monitoring malfunction and/or degradation of the system performance.

  • PDF

Design of a DSP Controller and Driver for the Power-by-wire(PBW) Driving System Using BLDC Servo Motor Pump (BLDC 서보 모터 펌프를 이용하는 직동력(PBW) 구동시스템의 DSP 제어기 및 구동기 설계)

  • Joo, Jae-Hun;Sim, Dong-Seouk;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1207-1212
    • /
    • 2011
  • This paper presents a study on the DSP(Digital Signal Processor) controller for the PBW(power-by-wire) system using BLDC(Brushless Direct Current) servo motor pump. The PBW hydraulic actuator was realized with hydraulic pump driven by BLDC servo motor, hydraulic cylinder and controller. This PBW system needs speed control of servo motor for linear thrust action of hydraulic cylinder. This paper implements a servo controller with vector control algorithm and MIN-MAX PWM technique. As CPU of a controller, TMS320F2812 DSP was adopted because it has PWM waveform generator, A/D converter, SPI(Serial Peripheral Interface) port and many input/output port etc.

Joint disturbance torque analysis for robots and its application in straight line path placement (로봇의 관절외란해석을 이용한 직선궤적 위치결정)

  • ;Choi, Myuoung Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1824-1827
    • /
    • 1997
  • Majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is influenced greatly by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and makes the high speed-high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2DOF planar robot, the conditions for the maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solutioin to the optimal path placement problem is proposed that minimizes the joint disturbance torque are examined. then, a solution to the optimal path placement problem is proposed that minimizes the joint disturbance torque during a straight line motion. the proposed method is illustrated using computer simulation. the proposed solution method cna be applied to the class of robots that are controlled by independent joint sevo control, which includes the vast majority of industrial robots. By minimizing the joint disturbacne torque during the motion, the simple joint servo controlled robot can move with improved path tracking accuracy at high speed.

  • PDF

A study on the control method of the high density optical disk drive (고밀도용 광디스크 드라이브의 제어기술에 관한 연구)

  • Bae, Hong-Moon;Choi, Hyun-Taek;Suh, Il-Hong;Jung, Hong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.1009-1012
    • /
    • 1999
  • Recently, there is a strong need of DVD (Digital Versatile Disk) system of high density. high speed, and high accuracy System performances mostly depend on not only optical system, but also servo technology to drive it. Therefore, we investigate main technology concerned with optical pick-up unit based on 4.7GB DVD-RAM and analyzes technology of optical and servo systems that are required for high density high speed and high accuracy from the viewpoint of control. And then, we design a linear controller based on specification of 4.7GB DVD-RAM that is commercially available now. We analyze the dynamic characteristics of optical system that is coupled with control system and verify effect on performance indices of servo due to Parameter variation of pick-up by simulation. Finally, we will propose controller design specifications and provide direction of technical development for servo system and problems coupled with high capacity for 15GB level in the future.

  • PDF

Robust Control of the Nonlinear Hydraulic Servo System Using a PID Control Technique (PID 제어 기술을 이용한 비선형 유압 시스템의 강인 제어)

  • Yu, Sam-Hyeon;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.850-856
    • /
    • 2001
  • Even though the hydraulic servo system has been widely used in industrial and military equipments since it has a lot of advantages, it is not easy to design controller due to the high nonlinearities and the parametric uncertainties. The dynamic behavior of the real process in the hydraulic servo system differs from that described by its model because the model is linearized. Another reason of the difference is caused by the variety of parameters, since the system parameters of the dynamic equation are affected by the operating conditions such as temperature and pressure. In this study, the designing process of the MRNC with a PID compensator is introduced and applied to the load sensing hydraulic servo system. The results show that the designed controller guarantees the robust control performance despite of both the nonlinearities and the parametric uncertainties.

Development of Experimental Gain Tuning Technique for Multi-Axis Servo System (다축 서보 시스템의 Gain Tuning에 관한 연구)

  • Chung W.J.;Kim H.G.;Seo Y.G.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.271-272
    • /
    • 2006
  • This paper presented a new experimental gain tuning technique for a Multi-Axis Servo System. First, the investigation for proportional gain of velocity control loop by using a Dynamic Signal Analyzer (DSA) was performed. Using the FUNCTION characteristic of DSA based on the Bode plot, the Bode plot of open loop transfer function was obtained. In turn, the integral gain of a servo controller can be found out by using the Integration time constant extracted from the Bode plot of open loop transfer function. In the meanwhile, the positional gain of the servo controller has been obtained by using the Bode plot of the closed loop transfer function. We have also proposed the technique to find out an optimal parameter of a notch filter, which has a great influence on vibration reduction, by using the damping factor extracted from the Bode plot of closed loop transfer function.

  • PDF