• Title/Summary/Keyword: servo-control

Search Result 1,728, Processing Time 0.025 seconds

Speed Control of AC servo system using LabVIEW and cRIO (LabVIEW와 cRIO를 이용한 AC 서보시스템의 속도제어)

  • Yun, Ki-Hyeon;Ji, Jun-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.166-168
    • /
    • 2006
  • This paper presents a speed control of AC servo system using LabVIEW program and cRIO (Compact RIO)hardware which is a real-time controller made in National Instruments company. LabVIEW is a GUI programming language easy to implement control system and cRIO is a reconfigurable hardware platform which is very simple. Therefore Lab VIEW and cRIO will be excellent tools to design and implement control system.

  • PDF

PWM ASIC Development for AC Servo and Spindle motor control (AC Motor 제어용 PWM ASIC 설계 및 개발)

  • 최종률
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.605-609
    • /
    • 2000
  • This paper presents a development of the Pulse Width Modulation ASIC for control of the AC servo or spindle motor in machine tools. The ASIC is designed two PWM functions for simultaneous control of a converter and an inverter. Also the device includes additionally two UART functions for interfacing the RS232C with PC or other devices. The device is connected to the microprocessor of Intel or Motorola by bus interface. The required output voltage and frequency for the motor control is programmed to the PWM block and the corresponding switching signals are calculated and generated with regard to the programmed value.

  • PDF

Lyapunov Stability Analysis of IPD Control for 2nd Order Regulation Servo Systems (2차 레귤레이션 서보 시스템을 위한 IPD 제어의 Lyapunov 안정도 해석)

  • 이정훈
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.382-385
    • /
    • 1999
  • In this paper, by means of Lyapunov second method, the stability of IPD control servo systems is analyzed in the time domain for the first time. Based on the results of the stability analysis, the design rule to select the gain of IPD control is suggested such that the maximum error of output to the nominal system is guaranteed for all uncertainty and load variations. An example of a position control of a brushless dc motor is given to prove the unusefulness of the gain design rule.

  • PDF

Development of fuzzy control algorithm for servo systems (Servo system에 대한 fuzzy control algorithm의 연구)

  • 이수흠;정원용;이현우;박창대
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.563-566
    • /
    • 1991
  • This paper discusses the possibility of applying fuzzy logic controller in a microprocessor - based servomotor controller, such as servomotor position controller, which requires faster and more accurate response compared with other industrial processes. According to the fuzzy control rule made by tie analysis of error and error change, one Look-up table that contains various quantized step is made and appropriate initial error change is selected to the good responses.

  • PDF

Analysis of Robust Control Algorithms for DVDR Servo using Fixed-Point Arithmetic (고정 소수점 연산을 이용한 DVDR 서보의 강인 제어 알고리즘 해석)

  • 박창범;김홍록;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.259-259
    • /
    • 2000
  • In the recent, the size of hardware is smaller and the structure is simpler, without reducing the performance of the digital controller. Accordingly, the fixed-point arithmetic is very important in the digital controller. This paper presents simulation to apply the robust control algorithms to DVDR servo controller using the floating-point and fixed-point arithmetic from the matlab. Also, it analyses and compares the performance of control algorithms in the each of point calculation and presents a method for improvement of drop in the performance, quantization error and overflow/underflow from using the fixed-point arithmetic

  • PDF

Design of robust servo systems and application to control of training simulator for radio-controlled helicopter (강인한 서보계설계와 R/C헬리콥터 트레이닝 시뮬레이터 제어에의 응용)

  • 김상봉;박순실
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.497-506
    • /
    • 1991
  • In this paper, a new construction for training simulator of R/C helicopter based on two types of servo controller is proposed. Two modified algorithms (algorithm I and II) for servo controller design are presented. Algorithm I is developed by adopting Davison's method in the case that the expressions for the homogeneous differential equations of reference input and disturbance are different types, and algorithm II is done by considering error weighting function for the servo controller of algorithm I . The linear fractional transformation method is incorporated in both design methods in order to assign the closed loop poles of the servo system in a specified region. The helicopter simulator is composed by the gimbals with two freedom of rolling and pitching. The reliability and validity for the design methods of the proposed servo controller are investigated through the practical experiment for the simulator by using 16bits micro-computer with A/D and D/A converters. It can be observered from the experimental results that the proposed servo controller is applicable to practical plants since the simulator is robust for the arbitrary disturbance and it follows to the given reference input without significant steady state error.

Design of Speed Observer and Controller for AC Servo System by Rapid Design System (고속설계시스템에 의한 AC 서보시스템의 속도관측기 및 속도제어기 설계)

  • Ji Jun-Keun;Lee Dong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.453-456
    • /
    • 2005
  • In this paper, design of speed observer and controller for AC servo system by rapid design system(RG-01D) using DSP of Realgain company is introduced. 'AC Servo-Designer' system, including CEMTool/SIMTool S/W, RG-DSOPIO board, AC servo driver and AUTOTool program, is used in this research. Because 'AC Servo-Designer' system can use SIMTool blocks to design and implement various controller in short time, speed observer and controller for AC servo system is easily designed and implemented according to control objectives.

  • PDF

Repetitive Control for Track-Following Servo of an Optical Disk Drive Using Linear Matrix Inequalities (선형 행렬 부등식을 이용한 광 디스크 드라이브의 트랙 추종 서보를 위한 반복 제어)

  • 도태용;문정호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2003
  • Rotational machines such as optical disk drives, hard disk drives, and so on are subject to periodic disturbances caused by their mechanical characteristics. In the meanwhile, it is well known that repetitive control rejects periodic disturbance effectively. This paper presents a practical application of repetitive control to the track-following servo of an optical disk drive. The repetitive control system is composed of two repetitive controllers which compensate for periodic disturbances generated by track geometry and eccentric rotation of disk and a feedback controller stabilizing the feedback loop. A robust stability for all plant uncertainties is proved using linear matrix inequalities (LMIs). In the controller design, a weighting function is introduced for the feedback controller to ensure a minimum loop gain and a sufficient phase margin. The repetitive controllers and the feedback controller are designed by solving an optimization problem which can consider the robust stability condition and the system performance. The developed repetitive control system is implemented in the digital control system with a 16-bit fixed-point digital signal processor (DSP). Through simulation and experiment. The feasibility of the proposed repetitive control system is verified.

Joint disturbance torque analysis for independent joint controlled robots and its application in optimal path placement (독립관절제어 로봇의 관절외란해석과 최적경로위치 문제의 해법)

  • Choi, Myung-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.342-348
    • /
    • 1998
  • A majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is greatly influenced by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and hence makes the high speed - high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2 DOF planar robot, the conditions for the minimum and maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solution to the optimal path placement problem is propose that minimizes the joint disturbance torque during a straight line motion. The proposed method is illustrated using computer simulation. The proposed solution method can be applied to a class of robots that are controlled by independent joint servo control, which includes the vast majority of industrial robots.

  • PDF

Design of Servo Control System Using Bilinear Transformation Approach (쌍선형 변환법을 이용한 서어보 제어계 설계)

  • Kim, Sang-Bong;An, Hwi-Ung;Ji, Seok-Geun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.81-87
    • /
    • 1990
  • In this paper, a new design method in which transient response behavior of a servo~system can be improved, is proposed using a bilinear transformation method which assigns the poles of the closed-loop system in a specified region. The servo-system is a dynamic system which follows the given reference input automatically. In the above meaning, the design of a servo-system is similar to a regulator design problem for the extended system which is resulted from the given system and the reference input by the well known internal moel principle. In the design problem of servo control system, it is supposed that the proposed design method has more practical meaning in comparison to the other design methods, in the views of assigning the characteristic roots of the closed loop system in a specified region satisfying a design specification for the given transient response rather than in the exact positions of the poles. The applicability of the design method proposed in this paper was proved by the simulation results for the angle control problem of an electrical servo mechanism.

  • PDF