• Title/Summary/Keyword: servo-control

Search Result 1,728, Processing Time 0.031 seconds

The Design And Implementation of Robot Training Kit for Java Programming Learning (Java 프로그래밍 학습을 위한 로봇 트레이닝키트의 설계 및 구현)

  • Baek, Jeong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.97-107
    • /
    • 2013
  • The latest programming paradigm has been mostly geared toward object-oriented programming and visual programming based on the object-oriented programming. However, object-oriented programming has a more difficult and complicated concept compared with that of existing structural programming technique; thus it has been very difficult to educate students in the IT-related department. This study designed and implemented a Java robot training kit in which the Java virtual machine is built so that it may enhance the desire and motivation of students for learning the object-oriented programming using the training kit which is possible to attach various input and output devices and to control a robot. The developed Java robot training kit is able to communicate with a computer through the USB interface, and it also enables learners to manufacture a robot for education and to practice applied programming because there is a general purpose input and output port inside the kit, through which diverse input and output devices, DC motor, and servo motor can be operated. Accordingly, facing the IT fusion era, the wall between the academic circles and the major becomes lower and the need for introducing education about creative engineering object-oriented programming language is emerging. At this point, the Java robot training kit developed in this study is expected to make a great commitment in this regard.

Development of non-destructive freshness measurement system for eggs using PLC control and image processing (PLC제어와 영상처리를 이용한 계란의 비파괴 신선도 측정 시스템 개발)

  • Kim, Tae-Jung;Kim, Sun-Jung;Lee, Dong-Goo;Lee, Jeong-Ho;Lee, Young-Seok;Hwang, Heon;Choi, Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.162-169
    • /
    • 2019
  • Non-destructive freshness measurement using spectroscopy has been carried out several times, but research on freshness and freshness has not been conducted. Therefore the purpose of this study is to develop a system for visually measuring and quantifying the air sack inside the egg by non - destructive method. The experimental environment which designed a small chamber was composed of 850nm band of two IR lasers, IR camera and two servo motors to acquire air sack Images. When the air sack volume ratio is 2.9% or less and the density is 0.9800 or more, the Haugh Unit value is 60 or more It was judged to be a fresh egg of a grade B or higher. These results mean, using the weight measurement, nondestructive decision system, and freshness evaluating algorithm. It can be expected to distinguish grade B or more marketable eggs without using destructive methods.

Design and Development of Intelligent Cattle Shed for the Prevention of Livestock Waste (가축 폐사 방지를 위한 지능형 축사의 설계 및 개발)

  • Jang, Junewoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.32-35
    • /
    • 2019
  • One of the major problems with the livestock industry is that in the summer, livestock will die from heat waves or infectious diseases. Under these circumstances, what livestock need is a proper indoor temperature and a regular sterilization system. Therefore, in this study, we developed a system that automatically controls the power of the fan according to the temperature inside the shaft, and a function that provides feed and sterilization on a regular basis, so that we could manage the toast efficiently. It also proposed the ability to automatically control the power of the fan, to display the temperature inside the shaft to mobile applications, and to provide food and sterilization. First, the function of controlling the power of the fan automatically turns the fan on when the temperature inside the shaft rises above a certain level. Conversely, if the temperature inside the shaft falls below a certain level, turn off the fan. Second, the function of the mobile application is to check the temperature inside the shaft. The third feeding function is periodically fed using a servo motor, and the feeding provided is delivered to livestock through a conveyor belt. Finally, the sterilization function is a function to sterilize livestock periodically using DC motor pump. The intelligent congratulatory functions proposed in this study may contribute to the health of livestock.

  • PDF

Fluid Injection Simulation Considering Distinct Element Behavior and Fluid Flow into the Ground (지반내 입자거동 및 흐름을 고려한 수압작용 모델링)

  • Jeon, Je-Sung;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.67-75
    • /
    • 2008
  • It is interesting to note that distinct element method has been used extensively to model the response of micro and discontinuous behavior in geomechanics. Impressive advances related to response of distinct particles have been conducted and there were difficulties in considering fluid effect simultaneously. Current distinct element methods are progressively developed to solve particle-fluid coupling focused on fluid flow through soil, rock or porous medium. In this research, numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. After generation of initial particles and wall elements, confining stress was applied by servo-control method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell. Fluid was injected as 7-step into the assembly in the x-direction from the inlet located at the center of the left boundary under confining stress condition, $0.1MP{\alpha}\;and\;0.5MP{\alpha}$, respectively. For each simulation, movement of particles, flow rate, fluid velocity, pressure history, wall stress including cavity initiation and propagation by interaction of flulid-paricles were analyzed.

Atmospheric Disturbance Simulation in Adaptive Optics: from Theory to Practice (적응광학에서의 대기 외란 모사: 이론에서 실제 적용까지)

  • Jun Ho Lee;Ji Hyun Pak;Ji Yong Joo;Seok Gi Han;Yongsuk Jung;Youngsoo Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.5
    • /
    • pp.199-209
    • /
    • 2024
  • Predicting the performance of adaptive optics systems is a crucial step in their design and analysis. First-order prediction methods, based primarily on several assumptions and scaling laws, are commonly used. These methods must account for various parameters and error sources, such as the intensity and profile of atmospheric turbulence, fitting errors based on the resolution of the wavefront sensor and deformable mirror, wavefront-sensor noise propagated through the wavefront-reconstruction algorithm, servo lag due to the finite bandwidth of the control loop, and anisoplanatism caused by the arrangement of natural and laser guide stars. However, since first-order performance-prediction methods based on certain assumptions can sometimes yield results that deviate from real-world performance, evaluation through computational simulations and closed-loop tests on a testbed is necessary. Additionally, an atmospheric simulator is required for closed-loop testing, which must adequately simulate the spatial and temporal characteristics of atmospheric disturbances. This paper aims to present an overview of the theory of atmospheric disturbance simulators, as well as their implementation in computational simulation and hardware.

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study (동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발)

  • Lee, Suk;Lee, Sang-Hoon;Shin, Dong-Ho;Yang, Dae-Sik;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.122-125
    • /
    • 2004
  • In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration gating techniques that can adjust patients' beds by using reversed values of the data obtained. The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range 3 cm ${\sim}$3 m), host computer (RS232C) and stepping motor (torque 2.3Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place in order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data(three dimensional data form with distance of 2cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. The result of analyzing the acquisition-correction delay time for the three types of data values and about each value separately shows that the data values coincided with one another within 1% and that the acquisition-correction delay time was obtained real-time (2.34 ${\times}$ 10$^{-4}$sec). This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultra sonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.

  • PDF

Integrated Rotary Genetic Analysis Microsystem for Influenza A Virus Detection

  • Jung, Jae Hwan;Park, Byung Hyun;Choi, Seok Jin;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.88-89
    • /
    • 2013
  • A variety of influenza A viruses from animal hosts are continuously prevalent throughout the world which cause human epidemics resulting millions of human infections and enormous industrial and economic damages. Thus, early diagnosis of such pathogen is of paramount importance for biomedical examination and public healthcare screening. To approach this issue, here we propose a fully integrated Rotary genetic analysis system, called Rotary Genetic Analyzer, for on-site detection of influenza A viruses with high speed. The Rotary Genetic Analyzer is made up of four parts including a disposable microchip, a servo motor for precise and high rate spinning of the chip, thermal blocks for temperature control, and a miniaturized optical fluorescence detector as shown Fig. 1. A thermal block made from duralumin is integrated with a film heater at the bottom and a resistance temperature detector (RTD) in the middle. For the efficient performance of RT-PCR, three thermal blocks are placed on the Rotary stage and the temperature of each block is corresponded to the thermal cycling, namely $95^{\circ}C$ (denature), $58^{\circ}C$ (annealing), and $72^{\circ}C$ (extension). Rotary RT-PCR was performed to amplify the target gene which was monitored by an optical fluorescent detector above the extension block. A disposable microdevice (10 cm diameter) consists of a solid-phase extraction based sample pretreatment unit, bead chamber, and 4 ${\mu}L$ of the PCR chamber as shown Fig. 2. The microchip is fabricated using a patterned polycarbonate (PC) sheet with 1 mm thickness and a PC film with 130 ${\mu}m$ thickness, which layers are thermally bonded at $138^{\circ}C$ using acetone vapour. Silicatreated microglass beads with 150~212 ${\mu}L$ diameter are introduced into the sample pretreatment chambers and held in place by weir structure for construction of solid-phase extraction system. Fig. 3 shows strobed images of sequential loading of three samples. Three samples were loaded into the reservoir simultaneously (Fig. 3A), then the influenza A H3N2 viral RNA sample was loaded at 5000 RPM for 10 sec (Fig. 3B). Washing buffer was followed at 5000 RPM for 5 min (Fig. 3C), and angular frequency was decreased to 100 RPM for siphon priming of PCR cocktail to the channel as shown in Figure 3D. Finally the PCR cocktail was loaded to the bead chamber at 2000 RPM for 10 sec, and then RPM was increased up to 5000 RPM for 1 min to obtain the as much as PCR cocktail containing the RNA template (Fig. 3E). In this system, the wastes from RNA samples and washing buffer were transported to the waste chamber, which is fully filled to the chamber with precise optimization. Then, the PCR cocktail was able to transport to the PCR chamber. Fig. 3F shows the final image of the sample pretreatment. PCR cocktail containing RNA template is successfully isolated from waste. To detect the influenza A H3N2 virus, the purified RNA with PCR cocktail in the PCR chamber was amplified by using performed the RNA capture on the proposed microdevice. The fluorescence images were described in Figure 4A at the 0, 40 cycles. The fluorescence signal (40 cycle) was drastically increased confirming the influenza A H3N2 virus. The real-time profiles were successfully obtained using the optical fluorescence detector as shown in Figure 4B. The Rotary PCR and off-chip PCR were compared with same amount of influenza A H3N2 virus. The Ct value of Rotary PCR was smaller than the off-chip PCR without contamination. The whole process of the sample pretreatment and RT-PCR could be accomplished in 30 min on the fully integrated Rotary Genetic Analyzer system. We have demonstrated a fully integrated and portable Rotary Genetic Analyzer for detection of the gene expression of influenza A virus, which has 'Sample-in-answer-out' capability including sample pretreatment, rotary amplification, and optical detection. Target gene amplification was real-time monitored using the integrated Rotary Genetic Analyzer system.

  • PDF

Development of a prototype simulator for dental education (치의학 교육을 위한 프로토타입 시뮬레이터의 개발)

  • Mi-El Kim;Jaehoon Sim;Aein Mon;Myung-Joo Kim;Young-Seok Park;Ho-Beom Kwon;Jaeheung Park
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.257-267
    • /
    • 2023
  • Purpose. The purpose of the study was to fabricate a prototype robotic simulator for dental education, to test whether it could simulate mandibular movements, and to assess the possibility of the stimulator responding to stimuli during dental practice. Materials and methods. A virtual simulator model was developed based on segmentation of the hard tissues using cone-beam computed tomography (CBCT) data. The simulator frame was 3D printed using polylactic acid (PLA) material, and dentiforms and silicone face skin were also inserted. Servo actuators were used to control the movements of the simulator, and the simulator's response to dental stimuli was created by pressure and water level sensors. A water level test was performed to determine the specific threshold of the water level sensor. The mandibular movements and mandibular range of motion of the simulator were tested through computer simulation and the actual model. Results. The prototype robotic simulator consisted of an operational unit, an upper body with an electric device, a head with a temporomandibular joint (TMJ) and dentiforms. The TMJ of the simulator was capable of driving two degrees of freedom, implementing rotational and translational movements. In the water level test, the specific threshold of the water level sensor was 10.35 ml. The mandibular range of motion of the simulator was 50 mm in both computer simulation and the actual model. Conclusion. Although further advancements are still required to improve its efficiency and stability, the upper-body prototype simulator has the potential to be useful in dental practice education.