• Title/Summary/Keyword: servo drive

Search Result 407, Processing Time 0.028 seconds

High Efficiency Drive of Dual Inverter Driven SPMSM with Parallel Split Stator

  • Lee, Yongjae;Ha, Jung-Ik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.216-224
    • /
    • 2013
  • This paper describes dual inverter drive for a fractional-slot concentrated winding permanent magnet synchronous machine (PMSM). PMSMs are widely used in many applications from small servo motors to few megawatts generators thanks to its high efficiency and torque density. Especially, fractional-slot concentrated winding PMSM is very popular in the applications where wide operation range is required because it shows very wide constant power speed ratios. High speed operation, however, requires lots of negative daxis current for reducing back-EMF regardless of output torque. Field weakening current does not contribute to the torque generation in surface mounted PMSM case and causes inverter and copper loss. To reduce the losses from field weakening current, this paper proposes PMSM with split stator and parallel dual inverter drive. Proposed parallel dual inverter drive reduces back-EMF and enables efficient drive at high speed and light load situation. Control strategy of proposed dual inverter system is established through loss analysis and simulation. Proposed concept is verified with practical experiment.

A Position Control System of SRM using Digital Hysteresis Controller (디지털 히스테리시스 제어기를 이용한 SRM의 위치제어시스템)

  • 김민회;백원식;김남훈;최경호;김동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.253-261
    • /
    • 2002
  • This paper presents an implementation of position control system of Switched Reluctance Motor (SRM) using digital hysteresis controller by TMS320F740 DSP. Although SRM possess several advantages including simple structure and high efficiency, but the control thrive system using power semiconductor device is required to drive this motor. The control drive system increases overall system cost. To overcome this problem and increase the application of SRM, it is needed to develope the servo dave system of SRM. So, the position control system of 1 Hp SRM is developed and evacuated by adaptive switching angle control. The position/speed response characteristics and voltage/current waveforms are presented to prove the capability of SRM for a servo drive application. Moreover, digital hysteresis current controller is developed and evaluated by experimental testing for the purpose of system developmental cost reduction.

Robust and Non-fragile $H^{\infty}$ Controller Design for Tracking Servo of Blu-ray disc Drive System (Blu-ray 디스크 드라이브 시스템 트래킹 서보시스템에 대한 견실비약성 $H^{\infty}$ 상태궤환 제어기 설계)

  • Lee, Hyung-Ho;Kim, Joon-Ki;Kim, Woon-Ki;Jo, Sang-Woo;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.32-41
    • /
    • 2008
  • In this paper, we describe the synthesis of robust and non-fragile $H^{\infty}$ state feedback controllers for linear systems with affine parameter uncertain tracking servo system of blu-ray disc drive, as well as static state feedback controller with polytopic uncertainty Similarity any other control system, the objective of the track-following system design for optical disc drives is to construct the system with better performance and robustness against modeling uncertainties and various disturbances. Also, the obtained condition can be rewritten as parameterized linear matrix inequalities(PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of controller gain variations within a resulted polytopic region.

Adaptive Feedforward Rejection of Microactuator Resonance in Hard Disk Drive Dual-stage Actuator Servo (하드디스크 드라이브 마이크로 구동기의 공진 영향 제거를 위한 적응 피드포워드 제어)

  • Oh, Dong-Ho;Lee, Seung-Hi;Baek, Sang-Eun;Na, Hee-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1596-1600
    • /
    • 2000
  • We propose a novel adaptive feed forward controller (AFC) design method for rejecting the effect of micro actuator resonance in the design of dual-stage actuator servo systems for disk drives. Microactuator's resonance is one of important issues in dual-stage actuator servo, which varies up to ${\pm}10%$ per product and even during operation. We derive an adaptive algorithm for the proposed AFC design, which turns out to be identical to the delayed-x LMS algorithm which is a special form of the filtered-x LMS algorithm. In the algorithm, coefficients of the AFC are adapted by the residuals of constrained structure defined in such a way that the coefficients become time invariant. Contrary to the conventional AFC, it considers the phase delay of closed-loop transfer function at resonance frequency for system stability. We also apply an adaptive algorithm with frequency tracking capability. The frequency tracking algorithm is induced by the orthogonality of AFC coefficients. Computer simulations are carried out to demonstrate effect of the proposed AFCs.

  • PDF

THD Analysis of a Hydraulic Servo Valve Using CFD (CFD를 이용한 유압 서보밸브의 열유체 해석)

  • Jeong, Y.H.;Park, T.J.
    • Journal of Drive and Control
    • /
    • v.11 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • Hydraulic servo valves are widely used in various fluid power systems because of their fast response and precision control. In this paper, we studied the effect of metering notch shapes and amount of their openings on the flow characteristics within the spool valve using a computational fluid dynamic (CFD) code, FLUENT. To obtain the results for more realistic operating conditions, viscous heating due to the jet flow and viscosity variation of the hydraulic fluid with temperature were considered. For two types of notch shape, streamlines, oil temperature and viscosity distributions, and variations of flow and friction forces acting on spool were showed. The flow and friction forces affected by the metering notch shapes and their openings, and oil temperature rise near metering notch was significant enough to results in the jamming phenomenon. A thermohydrodynamic (THD) flow analysis adopted in this paper can be used in optimum design of hydraulic servo valves.

A Study on the PID Order tuning by GAs for Velocity Control of DC Servo Motor (DC 서보모터의 속도제어를 위한 GAs의 PID 계수조정에 관한 연구)

  • Park Jae-Hyung;Kim Seong-Kon;Lee Sang-kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1840-1846
    • /
    • 2005
  • In this paper, does by purpose DC servo motor speed controller design about PID coefficient tuning techniques that use genetic algerian. DC servo motor is used in application field of a peat many control machine or robot etc. and in this field, selection of controller parameters requires user's expert knowledge. Therefore, general amount of work engineers must continuously iteration tuning in controller parameters by trial and error. With this, when must tuning parameter coefficient about change of dynamic system or disturbance, can improve the efficiency according to following that is more precised and parameter coefficient value that is optimized by using genetic algorithm. In this paper, from dynamic character modeling get in analyze dynamic character of DC motor desist controller drive control possible that is fast response character md improved speed precision using a Genetic Algorithms.

A Study of Hydraulic Actuator Based On Electro Servo Valve For A Walking Robot (보행 로봇을 위한 서보밸브 구동 유압 액추에이터의 특성 분석)

  • Cho, Jung San
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2016
  • This paper describes of a mathematical and real experimental analysis for a walking robot which uses servo valve driven hydraulic actuator. Recently, many researchers are developing a walking robot based on hydraulic systems for the difficult and dangerous missions such as walking in the rough terrain and carrying a heavy load. In order to design and control a walking robot, the characteristics of the hydraulic actuators in the joint through the view point of walking such as controllability and backdrivability must be analyzed. A general mathematical model was used for analysis and proceeds to position and pressure changes characteristic of the input and backdrivability experiment. The result shows the actuator is a velocity source, had a high impedance, the output stiffness is high in contact with the rigid external force. So stand above the controller and instruments that complement the design characteristics can be seen the need to apply a hydraulic actuator in walking robot.

Design of a GA-Based Fuzzy PID Controller for Optical Disk Drive (유전알고리즘을 이용한 Optical Disk Drive의 퍼지 PID 제어기 설계)

  • 유종화;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.598-603
    • /
    • 2004
  • An optical head actuator of an optical disk drive consists of two servo mechanisms for the focusing and the tracking to acquire data from disk. As the rotational speed of the disk grows, the utilized lag-lead-lead compensator has known to be above its ability for precisely controlling the optical head actuator. To overcome the difficulty, this paper propose a new controller design method for optical head actuator based fuzzy proportional-integral-derivative (PID) control and the genetic algorithm(GA). It employs a two-stage control structure with a fuzzy PI and a fuzzy PD control and is optimized by the GA to yield the suboptimal fuzzy PID control performance. It is shown the feasibility of the proposed method through a numerical tracking actuator simulation.

A Study on AC Servo Motor Drive Using the Virtual state (가상 상태를 이용한 교류 서보 전동기 구동에 관한 연구)

  • Kim, Sung-Hwon;Park, Seung-Kyu;Ahn, Ho-Kyun;Kim, Min-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1158-1160
    • /
    • 2002
  • In this paper, we presents sliding surface design techniques using the virtual state. This sliding surface has same dynamic of nominal system and permit application with other controller. If select initial value of the virtual state properly, problem of reaching phase disappears. And applied in AC servo motor's speed control to show performance of proposed sliding mode control techniques.

  • PDF

Global Stage of Reproducibility Experiment for Single Point Diamond Turning (초정밀 선삭가공을 위한 글로벌스테이지의 재현성 실험)

  • Park, Dae-Kwang;Kwak, Nam-Su;Kwon, Dae-Ju;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.982-988
    • /
    • 2013
  • With conventional positioning apparatus, it is very difficult to simultaneously achieve the desired driving range and precision at the sub-micrometer level. Generally, lead screw and friction drive, etc., have been used as servo control systems. These have large driving ranges, and high-speed positioning is feasible. In this study, we present a global servo system controlled by a laser interferometer acting as a displacement measurement sensor for achieving positioning accuracy at the sub-micrometer level.