• Title/Summary/Keyword: serpentine soil

Search Result 20, Processing Time 0.02 seconds

Studies on the Decomposition of Leaf Litter Containing Heavy Metals in Andong Serpentine Area, Korea I. Microcosm Experiment (사문암지대의 중금속 함유 낙엽의 분해에 관한 연구 I. Microcosm 실험)

  • Ryou, Sae-Han;Kim, Jeong-Myeong;Shim, Jae-Kuk
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.4
    • /
    • pp.353-362
    • /
    • 2009
  • This study attempted to compare the litter decomposition rate of Arundinella hirta and Miscanthus sinensis var. purpurascens which collected from serpentine soil acting potentially toxic concentration of heavy metals and non-serpentine soil by using the microcosm method for 192 days under constant humidity and $23^{\circ}C$. The contents of Ni, Fe, Mg and Cr in the serpentine and nonserpentine soil originated litter showed high differences between them. The litter samples from serpentine site have lower C/N than non-serpentine litter, but the soluble carbohydrate content was shown almost similar between two plant litter. The mass loss rates of leaf litter from serpentine area were slower than those from non-serpentine site. During the experimental period, the remained dry weight of A. hirta and M. sinensis var. purpurascens litter collected from serpentine site were 64.7%, 65.0% of initial dry weight and litter samples from non-serpentine site showed 54.2%, 50.7%, respectively. K and Na were leached rapidly at the initial decomposition periods, but Ca showed immobilization and other metal elements reserved at the decomposing litter for a long time. The decomposing A. hirta litter from non-serpentine soil showed higher values of $CO_2$ evolution, microbial biomass-C, and microbial biomass-N than those in serpentine soil originated litter acting nutrient stresses and exhibited rapid decay rate. The microbial biomass and microbial respiration of decaying litter were positively correlated with litter decomposition rate, and these relationships showed more rapid slope in non-serpentine soil originated litter than that in serpentine soil.

Plant Uptake of Heavy Metals in Andong Serpentine Soil

  • Kim, Jeong-Myeong;Yang, Keum-Chul;Choi, Sang-Kyoo;Yeon, Myung-Hun;Shin, Jin-Ho;Shim, Jae-Kuk
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.4
    • /
    • pp.408-415
    • /
    • 2006
  • Serpentines soil have high values of magnesium and low values of calcium, and are usually deficient in N and P, but rich in iron, Ni, silicates. We investigated serpentine soil properties and measured the content of nutrient elements and heavy metals in shoots and root of plant species which were in common at serpentine and non-serpentine areas in Andong, Korea. The soils showed higher pH value above 6.9. The contents of Ni, Cr, Fe and Mg of serpentine soils exhibited 77, 27, 5.5 and 12.5 times more than in non-serpentine soils, respectively. The content of Na was almost same but K was two times higher in non-serpentine soil, compared with serpentine soil. The contents of nutrient element such as K, Ca, Na and P in serpentine plants did not show conspicuous differences with non-serpentine plants. On the other hand, the concentrations of Ni, Cr, Fe, Mg and Mg/Ca were very high in plant on serpentine area. The all plant species collected at the serpentine site were bodenvag plants, which are not restricted to a specific type of substrate. By the plant species and parts of plant tissues, the absorption levels and patterns showed high variation and were species-specific. Carex lanceolata, Lysimachia clethroides and Cynanchum paniculatum contained much chromium and Eupatorium chinense and C. paniculatum exhibited high contents of Ni. In leaf tissue, C. lanceolata, Rubus parvifolius, Festuca ovina, Quercus serrata, and L. clethroides took comparatively large amount of Cr in serpentine area. E. chinense contained large amount of Ni, Cr and Fe in a leaf tissue. The stem of Galium verum, Juniperus rigida included high amount of Cr, Ni and Fe. And C. paniculatum absorbed large amount of Ni and Cr in the stem.

Toxic Effects of Serpentine Soils on Plant Growth

  • Kim, Jeong-Myeong;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.31 no.4
    • /
    • pp.327-331
    • /
    • 2008
  • Serpentine soils are distributed in a small area in Korea, and generally exhibit high contents of Ni, Cr, Fe, Mn, Co and Mg. We investigated the growth of woody plants and herbs in the Andong serpentine area, Korea. Pinus densiflora and P. rigida growing on serpentine soils have high contents of Fe, Mg, Ni and Co, with contents approximately twice as high as those of non-serpentine plants. Tree species on serpentine soil also had lower ratios of tree height/DBH than trees in a control area. In greenhouse culture experiments on two bodenvag herb species, Setaria viridis and Cymbopogon tortilis, the biomass of the plants was significantly affected by soil type but not by seed origins. After 66 days, the growth of S. viridis and C. tortilis seedlings was significantly inhibited in serpentine soil, and the dry weight of each species showed significant negative correlations with soil heavy metal contents (Ni, Co and Cr). These results suggest that the growth of plants was inhibited by properties of the serpentine soil, and in particular, their high heavy metal concentration, which induced dwarfing in woody plants and reduction of total plant biomass in herbs.

Decomposition of Leaf Litter Containing Heavy Metals in the Andong Serpentine Area, Korea (안동 사문암지대의 중금속 함유 낙엽의 분해)

  • Ryou, Sae-Han;Kim, Jeong-Myung;Cha, Sang-Seub;Shim, Jae-Kuk
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.4
    • /
    • pp.426-435
    • /
    • 2010
  • The present study attempts to compare the soil chemical characteristics and biological activities (i.e. microbial biomass and soil enzyme activities), and litter decomposition rate of Arundinella hirta and Miscanthus sinensis var. purpurascens) collected from serpentine and non-serpentine sites by litter bag techniques at serpentine and non-serpentine field experiment sites over a 9-month period. The serpentine soil showed higher pH and soil alkaliphosphatase activity, and lower soil dehydrogenase and urease activities than the non-serpentine soil. Microbial biomass-N at the serpentine soil was larger than the non-serpentine soil, although the microbial biomass-C and microbial biomass-N represented no significant difference between serpentine and non-serpentine soil. These results suggest that the larger microbial biomass-N caused the lower C/N in serpentine soil. At the end of the experiment, the litter samples of A. hirta and M. sinensis collected from serpentine soil revealed a 39.8% and 38.5% mass loss, and the litter sample from non-serpentine soil also showed a 41.1% and 41.7% mass loss at the serpentine site. On the other hand, at the non-serpentine site, 42.2%, 37.4%, and 46.8%, 44.8% were respectively shown. These results demonstrate that the litter decomposition rate is more intensely affected by the heavy metal content of leaf litter than soil contamination. Moreover, the litter collected from the serpentine soil had a lower C/N, whereas the litter decomposition rate was slower than the litter from the non-serpentine soil, because the heavy metal inhibition activities on the litter decomposition process were more conspicuous than the effect of litter qualities such as C/N ratio or lignin/N. The nutrient element content in the decomposing litter was gradually leached out, but heavy metals and Mg were accumulated in the decaying litter. This phenomenon was conspicuous at the serpentine site during the process of decomposition.

Effect of Serpentine as Soil Conditioner on Growth of Turfgrass (토양 개량재로서 사문석이 잔디의 생육에 미치는 영향)

  • 태현숙;고석구;김용선
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.3
    • /
    • pp.86-93
    • /
    • 2002
  • The objectives of this research were to investigate the effect of serpentine as a new soil conditioner for growth of turfgrass. To achieve the goal, pure sand or mixtures of sand and serpentine with various ratios were tested for soil physical properties and the growth effects of perennial ryegrass and zoysiagrass growth were compared. Major results of this research are summarized as follows; 1) Hydraulic conductivity of 10~30% serpentine mixtures were observed within the range of 1010~901mm/h which is good for USGA recommendation. Experimental results of pH and EC for various mixtures indicated that the 10% serpentine mixture was the most suitable for turfgrass growth. 2) Perennial ryegass treated with 10% serpentine mixture showed the highest visual quality(p<0.01) among all treatments. And serpentine treatment was more effective to improve visual quality of perennial ryegrass than that of zoysiagrass. The treatment of 10% serpentine had better visual qualities than that of 20% in both of zoysiagrass and perennial ryegrass. Treatment with the right amount of serpentine extends green period for one to two weeks during early winter in both zoysiagrass and perennial ryegrass. 3) In perennial ryegrass, the treatment of 10% serpentine resulted in an increase of total dry weight compare with those of zeolite or barley stone, and also dramatically promoted the dry weight by 15% compared with sand 100%(control). Total dry weight of zoysiagrass treated with 10% serpentine was 9% higher than that of san. These results indicated that serpentine can be a good soil conditioner for both zoysiagrass and perennial ryegrass when it is blended with sand within a range of 10 to 20% by volume.

Carbon Budget of Pine Forest in Serpentine Area (사문암 지역 소나무림의 탄소수지 연구)

  • Yang, Keum-Chul;Namkung, Hyunmin;Kim, Jeong-Seob;Han, Mi-Kyoung;Shim, Jae-Kuk
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.676-685
    • /
    • 2018
  • This study is to compare carbon budget between serpentine sites and non-serpentine sites dominated by Pinus densiflora forest in the Andong serpentine area where has high values of magnesium and low values of calcium, and are usually deficient in nitrogen and phosphorus, but rich in heavy metals such as nickel, chrome, cobalt, etc. and to measure soil $CO_2$ efflux and environmental factors between January 2017 and December 2017. Soil $CO_2$ efflux was measured with LI-6400 once a month; the soil temperature at 10 cm depth, air temperature, soil moisture contents, and solar radiation were measured in continuum. Soil $CO_2$ efflux in the serpentine area and non-serpentine were $151.71{\pm}75.09g\;CO_2{\cdot}m^{-2}month^{-1}$(42.48 ~ 262.61 g $CO_2{\cdot}m^{-2}month^{-1}$) and $165.09{\pm}118.96g\;CO_2{\cdot}m^{-2}month^{-1}$(20.94 ~ 449.24 g $CO_2{\cdot}m^{-2}month^{-1}$), respectively. Carbon storage in the serpentine area and non-serpentine area were 91.90, $222.85ton{\cdot}ha^{-1}$, respectively. Carbon absorption in the serpentine area and non-serpentine area were 7.99, $17.41ton{\cdot}ha^{-1}yr^{-1}$, respectively. Carbon budget in the serpentine area and non-serpentine area were absorbs 5.3, $14.49ton{\cdot}Cha^{-1}yr^{-1}$, respectively.

Heavy Metal Contents of Gypsophila oldhamiana Growing on Soil Derived from Serpentine (사문암 지역에서 생육하는 대나물(Gypsophila oldhamiana)의 중금속 함량)

  • 김명희;민일식;송석환
    • The Korean Journal of Ecology
    • /
    • v.20 no.5
    • /
    • pp.385-391
    • /
    • 1997
  • To investigate the degrees of toxification in the serpentine areas, serpentinites and adjacent metamorphic rocks and soils from the serpentinite, metamorphic area and transitional area(mixed soil) between serpentinite and metamorphic rocks are collected from the Hongseong-Gun, Chungnam. A plant, Geochemically, the serpentinites are high in the nickel, chromium and cobalt content whereas the metamorphic rocks show high zinc, scandium, molybdenum and iron contents. The serpentine soils are high in the nickel, chromium and cobalt contents whereas the non-serpentine soils show high zinc and iron contents. Heavy metal contents in the G. oldhamiana are high in the serpentine soil relative to the mixed soil. Ratio of the iron to nickel contents for the G. oldhamiana are low in the serpentine soil(49) relative to the mixed soil(216). Of the G. oldhamiana, most of the heavy metal contents except zinc and molybdenum are high in the root relative to the aboveground vegetation. Comparing with rocks, the G. oldhamiana is low in the all of heavy metal contents relative to the serpentinite. Uptake of zinc by the G. oldhamiana is high in the serpentinites and metamorphic rocks whereas uptake of scandium and iron by the G. oldhamiana is very high in the serpentinite area.

  • PDF

The Trace Element Characteristics of Rocks, Top Soils, and Pinus rigida Growing on Soils Derived from Different Parent Rocks (서로 다른 모암과 토양의 미량원소 특성 및 리기다소나무의 원소 함량)

  • 민일식;김명희;송석환
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.1
    • /
    • pp.22-29
    • /
    • 1998
  • This study is investigated for the trace element concentration in the soils derived from different parent rocks, which are serpentinites, metamorphic rocks and black shales, and the absorption of the trace element by Pinus rigida in Hongseong and Keumsan, Chungnam, respectively. The concentrations of nickel, chrominium and cobalt are high in the serpentinites, whereas the concentrations of zinc, molybdenium and iron are high in the metamorphic rocks. These elements in black shale are lower than those in serpentinites and metamorphic rocks. The serpentine soils show high nickel, chrominium and cobalt content, while zinc and iron content are high in the mixed soils(serpentinites + metamorphic rocks) and black shales. Comparing with parent rocks, all of trace elements in their weathered soils are low. The pH of serpentine soil is high, 7.73~9.55 and that of black shale soil in 5.61. In serpentine area, the absorptions of chrominium by P. rigida is lower than its in the soils. The absorption of zinc by P. rigida is high relative to zinc concentration in soils. The Co/Ni and Fe/Ni quotient in P. rigida over serpentine soils are considerably lower than those growing over other soils tpes.

  • PDF

Differences of Rare Earth Element Concentrations of Plants in Top Soils of Gapyeong Serpentine Area: Based on the M. sinensis, A. vulgaris and R. crataegitolius (가평 사문암 지역의 토양 별 식물체내 희토류 원소 함량 차이: 억세, 쑥, 산딸기를 근거로)

  • Song, Suck-Hwan;Shin, Byung-Cheol
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.621-632
    • /
    • 2009
  • Rare earth contents(REE) were analysed for the plants, M. sinensis. A. vulgaris and R. crataegitolius, from two different soils serpentine area consisting of serpentinite(SP) and non-serpentine area, containing amphibole schist(AS) of Gapyeong area, and were compared with soils and host rocks. The AS were high with the differences of several times in the top soils, and with the differences of several to ten times in the host rocks relative to the SP. In the same area, the SP were high in the soil, but the rocks for the AS. In the plants, the A. vulgaris were high, but low in the R. crataegitolius. Root parts were higher than the upper parts. Differences between the upper and root parts were big in the SP rather than the AS, and were big in the R. crataegitolius, but small in the M. sinensis. Among the parts of the plants, high elements were shown in the R. crataegitolius of the SP, and the A. vulgaris and M. sinensis of the AS. In the correlation coefficients, most of the REE showed positive relationships among the element pairs, especially high positive correlation coefficients in the upper parts of the SP.Differences of the soils and plants(average) were smalle in the M. sinensis and big in the R. crataegitolius. In the upper parts. contents of the A. vulgaris were close to the soils while the R. crataegitolius showed large discrepancies with the soils. In the root parts, contents of the A. vulgaris showed discrepancies with the soils regardless of soil types, but close in the R. crataegitolius of the SP and M. sinensis of the AS.