• Title/Summary/Keyword: series of buildings

Search Result 254, Processing Time 0.029 seconds

Effective Control of Indoor Air Pollutant using VAV/BPFS (VAV/BPFS를 이용한 실내공기 오염물질의 효율적 제어)

  • 최성우
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.327-334
    • /
    • 1998
  • The oil crisis of the 1970s and the rise in oil prices motivated people to implement energy conservation strategies. Buildings were fitted with additional Insulation and reduced ventilation rates. The reduction of mechanical and natural ventilation rate led to Increases In Indoor pollutant concentrations which result- ed In Increased health risks from Indoor exposure to pollutants. The variable-air-volume /bypass fitration system/VAV/BPFS) is a variation of the conventional VAV systems, The VAV/BPFS is an electronically controlled system that provides costegectlve thermal comfort and acceptable indoor air quality Under controlled conditions In a chamber, a series experiments were performed to compare the ability of a VAV/BPFS to remove Indoor aerosol concentration and to reduce energy consumption no that ability of conventional VAV system. Results show that the VAV/BPFS Increases the effective ventilation rate and removes indoor air pollutant, and maintains acceptable indoor air Quality without sacrificing energy consumption.

  • PDF

Development of Energy Efficient Smart Module with Variable Direction of Heat Flow, Heat Capacity and Surface Absorptivity (Thermo-Diode식 태양열 이용 모듈(Smart Module)개발)

  • Lee, K.J.;Chun, W.G.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.119-128
    • /
    • 1998
  • This study has been carried out to develop a thermo-diode system capable of adjusting heat flow direction, solar absorptivity and thermal capacity. What we call "Smart Module" here has emerged from a series of repeated processes involving design, construction and test. In all, it is found that liquid thermo-diode systems are viable in harnessing the sun's energy. The module can be applied for space heating in winter and reduce the cooling load of buildings in summer.

  • PDF

Energy Monitoring System with IoT Devices (IoT 디바이스 기반 에너지 모니터링 및 분석 시스템)

  • Lim, Hojung;Kang, Jeonghoon;Kim, Sanghan;Jung, Hyedong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.900-903
    • /
    • 2016
  • A variety of measures in various fields, buildings, factories, offices, supermarkets, etc. through a sensor installed for energy savings and user convenience are transmitted and received by the cloud server. Also, this kind of sensor service increases considering the user's convenience. In this paper, we research a variety of meter data linkage between oracle database and time series database, and data analysis.

  • PDF

A "Radical Departure"? How the Home Insurance Building Won the "First Skyscraper" Debate

  • Jason Barr
    • International Journal of High-Rise Buildings
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Today, most architectural and engineering historians no longer consider the Home Insurance Building to be the first skyscraper. Despite this, the popular belief remains that William Le Baron Jenny invented the first skyscraper when he designed the Home Insurance Building in 1884. This paper recounts the history of how Jenney won the public debate starting in 1896, despite his building being only a small evolutionary step forward. In that year, a series of letters in The Engineering Record allowed Jenney and his colleagues to engage in a public relations campaign to recast the debate about the first skyscraper to place the Home Insurance Building as the pivotal structure in skyscraper history.

Evaluation of Structural Performance of Reinforced Concrete Beams using Hybrid Retrofitting with Groove and Embedding FRP Rod and CFRP Sheet (표면요철 매입형 FRP봉과 CFRP시트를 복합 보강한 철근콘크리트 보의 구조성능 평가)

  • Ha, Gee-Joo;Ha, Young-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.41-49
    • /
    • 2014
  • In this study, experimental research was carried out to evaluate the structural performance of the reinforced concrete beam using hybrid retrofitting with two materials (groove and embedding FRP rod, CFRP sheet) in existing reinforced concrete buildings. Seven reinforced concrete beams, retrofitted groove and embedding FRP rod (NER series) and groove and embedding FRP rod with CFRP sheet (NERL series), and standard specimen (NBS) were constructed and tested under monotonic loading. Design parameters of test specimens are the amount of groove and embedding FRP rod and lapping CFRP sheet. Test results showed that the maximum load carrying capacity of specimens with groove and embedding FRP rod and groove and embedding FRP rod with CFRP sheet (NERL series) were increased the by 12~46% and 22~77% respectively in comparison with the standard specimen NBS. Test specimens NER series were failed with the adhesion slip and concrete cover separation. And test specimens NERL series were failed with the adhesion slip due to the confining effect of lapping CFRP sheet.

A Study on the Realization Method of Locality about Jeju Contemporary Architecture (제주 현대건축의 지역성 구현 방식에 관한 연구)

  • Kim, Hyoung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.46-51
    • /
    • 2018
  • This study is one of a series of studies exploring the locality of Jeju architecture, in which we focused on the works of domestic architects, rather than those of famous foreign architects, as well as on the locality of the phenomenological aspect rather than the conceptual one, so as to reveal the locality in the present situation. It was revealed that the architects had the following viewpoints with regard to the local characteristics of Jeju: first, the hermeneutic aspect of the locality is the architectural application of the traditional Jeju architecture; second, the phenomenal aspect of the locality involves respect for the landscape and natural scenery of Jeju. There are two main ways in which architects can realize the locality that they envisage. The hermeneutic representation of Jeju would be as a locality consisting of traditional houses. The architects mainly wanted to implement the elements of the private houses through the space layout. The phenomenal representation of the locality would require them to respect the landscape and scenery of Jeju and to implement them in its architecture. This was the case if the landscape or landscape elements were directly borrowed from the buildings, or if the buildings respect the scenery or landscape of Jeju.

Computational analysis of three dimensional steel frame structures through different stiffening members

  • Alaskar, Abdulaziz;Wakil, Karzan;Alyousef, Rayed;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.187-197
    • /
    • 2020
  • Ground motion records are commonly used for fragility curves (FCs) developing utilized in seismic loss estimating analysis for earthquake prone zones. These records could be 'real', say the recorded acceleration time series or 'simulated' records consistent with the regional seismicity and produced by use of alternative simulation methods. This study has focused on fragility curves developing for masonry buildings through computational 'simulated' ground motion records while evaluating the properness of these fragilities compared to the curves generated by the use of 'real' records. Assessing the dynamic responses of structures, nonlinear computational time history analyses through the equivalent single degree of freedom systems have been implemented on OpenSees platform. Accordingly, computational structural analyses of multi-story 3D frame structures with different stiffening members considering soil interaction have been carried out with finite element software according to (1992) Earthquake East-West component. The obtained results have been compared to each frame regarding soil interaction. Conclusion and recommendations with the discuss of obtaining findings are presented.

An Efficient Structural Analysis of Multistory Buildings (고층건물의 효율적인 구조해석)

  • Kim, Kyeong Ho;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.141-153
    • /
    • 1987
  • The prediction of the exact behavior of multistory building is one of the most complicated problem encountered in structural engineering practice. An efficient computer method for the three dimensional analysis of building structures is presented in this paper. A multistory building is idealized as an assemblage of a series of rectangular plane frames interconnected by rigid floor diaphragms. The matrix condensation technique is employed for the reduction of degrees of freedom, which results in a significant saving in computational efforts and the required memory size. Kinematical approach was used to assemble condensed stiffness matrices of plane frames into a three dimensional stick model stiffness matrix. The static analysis follows the modified tridiagonal approach. Since this procedure utilizes the condensed stiffness matrix of the structure, the dynamic equations of motion for the story displacement are developed by assigning proper mass for each story. Analysis results of several example structures are compared to those obtained by using the well-known SAP IV for verification of the accuracy and efficiency of the computer program PFS which was developed utilizing the method proposed in this study. The analysis method proposed in this study can be used as an efficient and economical means for the analysis of multistory buildings.

  • PDF

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.

Modelling of Soil Extraction Technique for Restoration of Building Tilt from Geotechnical Centrifuge Tests (원심모형실험을 통한 기울어진 건물의 기울기 교정에 이용되는 Soil Extraction 공법의 모델링)

  • Lee Cheol Ju;Ng C.W.W.
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.121-126
    • /
    • 2005
  • It is not uncommon to observe tilt of buildings and towers as a result of unexpected differential foundation settlements. Over the years, a number of engineering methods including the soil extraction technique have been attempted to reduce inclination of buildings and towers. In this research, a series of novel geotechnical centrifuge model tests by using a state-of-the-art in-flit robotic manipulator have been conducted to study key factors which govern the restoration of building tilts. In the centrifuge model tests, the robotic manipulator was used to drill and extract soil in-flight near an initially tilted model building. The soil extraction was to induce stress release, thereby mitigating the inclination of the model building. Insights into the effects of different configurations, soil density and sequences of drilling observed during the centrifuge model tests on the restoration of the model building are to be investigated.