• Title/Summary/Keyword: series model

Search Result 5,383, Processing Time 0.033 seconds

Operational modal analysis of reinforced concrete bridges using autoregressive model

  • Park, Kyeongtaek;Kim, Sehwan;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1017-1030
    • /
    • 2016
  • This study focuses on the system identification of reinforced concrete bridges using vector autoregressive model (VAR). First, the time series output response from a bridge establishes the autoregressive (AR) models. AR models are one of the most accurate methods for stationary time series. Burg's algorithm estimates the autoregressive coefficients (ARCs) at p-lag by reducing the sum of the forward and the backward errors. The computed ARCs are assembled in the state system matrix and the eigen-system realization algorithm (ERA) computes: the eigenvector matrix that contains the vectors of the mode shapes, and the eigenvalue matrix that contains the associated natural frequencies. By taking advantage of the characteristic of the AR model with ERA (ARMERA), civil engineering can address problems related to damage detection. Operational modal analysis using ARMERA is applied to three experiments. One experiment is coupled with an artificial neural network algorithm and it can detect damage locations and extension. The neural network uses a specific number of ARCs as input and multiple submatrix scaling factors of the structural stiffness matrix as output to represent the damage.

The Development of the Short-Term Predict Model for Solar Power Generation (태양광발전 단기예측모델 개발)

  • Kim, Kwang-Deuk
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.62-69
    • /
    • 2013
  • In this paper, Korea Institute of Energy Research, building integrated renewable energy monitoring system that utilizes solar power generation forecast data forecast model is proposed. Renewable energy integration of real-time monitoring system based on monitoring data were building a database and the database of the weather conditions and to study the correlation structure was tailoring. The weather forecast cloud cover data, generation data, and solar radiation data, a data mining and time series analysis using the method developed models to forecast solar power. The development of solar power in order to forecast model of weather forecast data it is important to secure. To this end, in three hours, including a three-day forecast today Meteorological data were used from the KMA(korea Meteorological Administration) site offers. In order to verify the accuracy of the predicted solar circle for each prediction and the actual environment can be applied to generation and were analyzed.

Application of time series based damage detection algorithms to the benchmark experiment at the National Center for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan

  • Noh, Hae Young;Nair, Krishnan K.;Kiremidjian, Anne S.;Loh, C.H.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.95-117
    • /
    • 2009
  • In this paper, the time series based damage detection algorithms developed by Nair, et al. (2006) and Nair and Kiremidjian (2007) are applied to the benchmark experimental data from the National Center for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan. Both acceleration and strain data are analyzed. The data are modeled as autoregressive (AR) processes, and damage sensitive features (DSF) and feature vectors are defined in terms of the first three AR coefficients. In the first algorithm developed by Nair, et al. (2006), hypothesis tests using the t-statistic are applied to evaluate the damaged state. A damage measure (DM) is defined to measure the damage extent. The results show that the DSF's from the acceleration data can detect damage while the DSF from the strain data can be used to localize the damage. The DM can be used for damage quantification. In the second algorithm developed by Nair and Kiremidjian (2007) a Gaussian Mixture Model (GMM) is used to model the feature vector, and the Mahalanobis distance is defined to measure damage extent. Additional distance measures are defined and applied in this paper to quantify damage. The results show that damage measures can be used to detect, quantify, and localize the damage for the high intensity and the bidirectional loading cases.

Time Series Data Processing Deep Learning system for Prediction of Hospital Outpatient Number (병원 외래환자수의 예측을 위한 시계열 데이터처리 딥러닝 시스템)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.313-318
    • /
    • 2021
  • The advent of the Deep Learning has applied to many industrial and general applications having an impact on our lives these days. Certain type of machine learning model is needed to be designed for a specific problem of field. Recently, there are many instances to solve the various COVID-19 related problems using deep learning model. Therefore, in this paper, a deep learning model for predicting number of outpatients of a hospital in advance is suggested. The suggested deep learning model is designed by using the Keras in Jupyter Notebook. The prediction result is being analyzed with the real data in graph, as well as the loss rate with some validation data to verify either for the underfitting or the overfitting.

Predicting Oxynitrification layer using AI-based Varying Coefficient Regression model (AI 기반의 Varying Coefficient Regression 모델을 이용한 산질화층 예측)

  • Hye Jung Park;Joo Yong Shim;Kyong Jun An;Chang Ha Hwang;Je Hyun Han
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.374-381
    • /
    • 2023
  • This study develops and evaluates a deep learning model for predicting oxide and nitride layers based on plasma process data. We introduce a novel deep learning-based Varying Coefficient Regressor (VCR) by adapting the VCR, which previously relied on an existing unique function. This model is employed to forecast the oxide and nitride layers within the plasma. Through comparative experiments, the proposed VCR-based model exhibits superior performance compared to Long Short-Term Memory, Random Forest, and other methods, showcasing its excellence in predicting time series data. This study indicates the potential for advancing prediction models through deep learning in the domain of plasma processing and highlights its application prospects in industrial settings.

MAGRU: Multi-layer Attention with GRU for Logistics Warehousing Demand Prediction

  • Ran Tian;Bo Wang;Chu Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.528-550
    • /
    • 2024
  • Warehousing demand prediction is an essential part of the supply chain, providing a fundamental basis for product manufacturing, replenishment, warehouse planning, etc. Existing forecasting methods cannot produce accurate forecasts since warehouse demand is affected by external factors such as holidays and seasons. Some aspects, such as consumer psychology and producer reputation, are challenging to quantify. The data can fluctuate widely or do not show obvious trend cycles. We introduce a new model for warehouse demand prediction called MAGRU, which stands for Multi-layer Attention with GRU. In the model, firstly, we perform the embedding operation on the input sequence to quantify the external influences; after that, we implement an encoder using GRU and the attention mechanism. The hidden state of GRU captures essential time series. In the decoder, we use attention again to select the key hidden states among all-time slices as the data to be fed into the GRU network. Experimental results show that this model has higher accuracy than RNN, LSTM, GRU, Prophet, XGboost, and DARNN. Using mean absolute error (MAE) and symmetric mean absolute percentage error(SMAPE) to evaluate the experimental results, MAGRU's MAE, RMSE, and SMAPE decreased by 7.65%, 10.03%, and 8.87% over GRU-LSTM, the current best model for solving this type of problem.

Accuracy Assessment of Forest Degradation Detection in Semantic Segmentation based Deep Learning Models with Time-series Satellite Imagery

  • Woo-Dam Sim;Jung-Soo Lee
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • This research aimed to assess the possibility of detecting forest degradation using time-series satellite imagery and three different deep learning-based change detection techniques. The dataset used for the deep learning models was composed of two sets, one based on surface reflectance (SR) spectral information from satellite imagery, combined with Texture Information (GLCM; Gray-Level Co-occurrence Matrix) and terrain information. The deep learning models employed for land cover change detection included image differencing using the Unet semantic segmentation model, multi-encoder Unet model, and multi-encoder Unet++ model. The study found that there was no significant difference in accuracy between the deep learning models for forest degradation detection. Both training and validation accuracies were approx-imately 89% and 92%, respectively. Among the three deep learning models, the multi-encoder Unet model showed the most efficient analysis time and comparable accuracy. Moreover, models that incorporated both texture and gradient information in addition to spectral information were found to have a higher classification accuracy compared to models that used only spectral information. Overall, the accuracy of forest degradation extraction was outstanding, achieving 98%.

A Stochastic Model for Air Pollutant Concentration (大氣汚染濃度에 관한 確率모델)

  • 김해경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.127-136
    • /
    • 1991
  • This paper is concerned with the development and application of a stochastic model for daily sulphur dioxide $(SO_2)$ concentrations in urban area (Seoul). For this, the characteristics of the regression trend, periodicity and dependence of the daily $SO_2$ concentration are investigated by a statistisical analysis of the daily average $SO_2$ values measured in Seoul area during 1989 $\sim$ 1990. Based on these, nonlinear regression time series model for the prediction of daily $SO_2$ concentrations is derived. A statistical procedure for using the model to predict the concentration level is also proposed.

  • PDF

Bayesian Estimation Procedure in Multiprocess Discount Generalized Model

  • Joong Kweon Sohn;Sang Gil Kang;Joo Yong Shim
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.193-205
    • /
    • 1997
  • The multiprocess dynamic model provides a good framework for the modeling and analysis of the time series that contains outliers and is subject to abrupt changes in pattern. In this paper we consider the multiprocess discount generalized model with parameters having a dependent non-linear structure. This model has nice properties such as insensitivity to outliers and quick reaction to abrupt change of pattern in parameters.

  • PDF

Joint Estimation of the Outliers Effect and the Model Parameters in ARMA Process

  • Lee, Kwang-Ho;Shin, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.2
    • /
    • pp.41-50
    • /
    • 1995
  • In this paper, an iterative procedure, which detects the location of the outliers and the joint estimates of the outliers effects and the model parameters in the autoregressive moving average model with two types of outliers, is proposed. The performance of the procedure is compared with the one in Chen and Liu(1993) through the Monte Carlo simulation. The proposed procedure is very robust in the sense that applies the procedures to the stationary time series model with any types of outliers.

  • PDF