• Title/Summary/Keyword: series model

Search Result 5,383, Processing Time 0.033 seconds

A Proposal of a Keyword Extraction System for Detecting Social Issues (사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안)

  • Jeong, Dami;Kim, Jaeseok;Kim, Gi-Nam;Heo, Jong-Uk;On, Byung-Won;Kang, Mijung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • To discover significant social issues such as unemployment, economy crisis, social welfare etc. that are urgent issues to be solved in a modern society, in the existing approach, researchers usually collect opinions from professional experts and scholars through either online or offline surveys. However, such a method does not seem to be effective from time to time. As usual, due to the problem of expense, a large number of survey replies are seldom gathered. In some cases, it is also hard to find out professional persons dealing with specific social issues. Thus, the sample set is often small and may have some bias. Furthermore, regarding a social issue, several experts may make totally different conclusions because each expert has his subjective point of view and different background. In this case, it is considerably hard to figure out what current social issues are and which social issues are really important. To surmount the shortcomings of the current approach, in this paper, we develop a prototype system that semi-automatically detects social issue keywords representing social issues and problems from about 1.3 million news articles issued by about 10 major domestic presses in Korea from June 2009 until July 2012. Our proposed system consists of (1) collecting and extracting texts from the collected news articles, (2) identifying only news articles related to social issues, (3) analyzing the lexical items of Korean sentences, (4) finding a set of topics regarding social keywords over time based on probabilistic topic modeling, (5) matching relevant paragraphs to a given topic, and (6) visualizing social keywords for easy understanding. In particular, we propose a novel matching algorithm relying on generative models. The goal of our proposed matching algorithm is to best match paragraphs to each topic. Technically, using a topic model such as Latent Dirichlet Allocation (LDA), we can obtain a set of topics, each of which has relevant terms and their probability values. In our problem, given a set of text documents (e.g., news articles), LDA shows a set of topic clusters, and then each topic cluster is labeled by human annotators, where each topic label stands for a social keyword. For example, suppose there is a topic (e.g., Topic1 = {(unemployment, 0.4), (layoff, 0.3), (business, 0.3)}) and then a human annotator labels "Unemployment Problem" on Topic1. In this example, it is non-trivial to understand what happened to the unemployment problem in our society. In other words, taking a look at only social keywords, we have no idea of the detailed events occurring in our society. To tackle this matter, we develop the matching algorithm that computes the probability value of a paragraph given a topic, relying on (i) topic terms and (ii) their probability values. For instance, given a set of text documents, we segment each text document to paragraphs. In the meantime, using LDA, we can extract a set of topics from the text documents. Based on our matching process, each paragraph is assigned to a topic, indicating that the paragraph best matches the topic. Finally, each topic has several best matched paragraphs. Furthermore, assuming there are a topic (e.g., Unemployment Problem) and the best matched paragraph (e.g., Up to 300 workers lost their jobs in XXX company at Seoul). In this case, we can grasp the detailed information of the social keyword such as "300 workers", "unemployment", "XXX company", and "Seoul". In addition, our system visualizes social keywords over time. Therefore, through our matching process and keyword visualization, most researchers will be able to detect social issues easily and quickly. Through this prototype system, we have detected various social issues appearing in our society and also showed effectiveness of our proposed methods according to our experimental results. Note that you can also use our proof-of-concept system in http://dslab.snu.ac.kr/demo.html.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.

Depth Control and Sweeping Depth Stability of the Midwater Trawl (중층트롤의 깊이바꿈과 소해심도의 안정성)

  • 장지원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.1-18
    • /
    • 1973
  • For regulating the depth of midwater trawl nets towed at the optimum constant speed, the changes in the shape of warps caused by adding a weight on an arbitrary point of the warp of catenary shape is studied. The shape of a warp may be approximated by a catenary. The resultant inferences under this assumption were experimented. Accordingly feasibilities for the application of the result of this study to the midwater trawl nets were also discussed. A series of experiments for basic midwater trawl gear models in water tank and a couple of experiments of a commercial scale gears at sea which involve the properly designed depth control devices having a variable attitude horizontal wing were carried out. The results are summarized as follows: 1. According to the dimension analysis the depth y of a midwater trawl net is introduced by $$y=kLf(\frac{W_r}{R_r},\;\frac{W_o}{R_o},\;\frac{W_n}{R_n})$$) where k is a constant, L the warp length, f the function, and $W_r,\;W_o$ and $W_n$ the apparent weights of warp, otter board and the net, respectively, 2. When a boat is towing a body of apparent weight $W_n$ and its drag $D_n$ by means of a warp whose length L and apparent weight $W_r$ per unit length, the depth y of the body is given by the following equation, provided that the shape of a warp is a catenary and drag of the warp is neglected in comparison with the drag of the body: $$y=\frac{1}{W_r}\{\sqrt{{D_n^2}+{(W_n+W_rL)^2}}-\sqrt{{D_n^2+W_n}^2\}$$ 3. The changes ${\Delta}y$ of the depth of the midwater trawl net caused by changing the warp length or adding a weight ${\Delta}W_n$_n to the net, are given by the following equations: $${\Delta}y{\approx}\frac{W_n+W_{r}L}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}{\Delta}L$$ $${\Delta}y{\approx}\frac{1}{W_r}\{\frac{W_n+W_rL}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}-{\frac{W_n}{\sqrt{D_n^2+W_n^2}}\}{\Delta}W_n$$ 4. A change ${\Delta}y$ of the depth of the midwater trawl net by adding a weight $W_s$ to an arbitrary point of the warp takes an equation of the form $${\Delta}y=\frac{1}{W_r}\{(T_{ur}'-T_{ur})-T_u'-T_u)\}$$ Where $$T_{ur}^l=\sqrt{T_u^2+(W_s+W_{r}L)^2+2T_u(W_s+W_{r}L)sin{\theta}_u$$ $$T_{ur}=\sqrt{T_u^2+(W_{r}L)^2+2T_uW_{r}L\;sin{\theta}_u$$ $$T_{u}^l=\sqrt{T_u^2+W_s^2+2T_uW_{s}\;sin{\theta}_u$$ and $T_u$ represents the tension at the point on the warp, ${\theta}_u$ the angle between the direction of $T_u$ and horizontal axis, $T_u^2$ the tension at that point when a weights $W_s$ adds to the point where $T_u$ is acted on. 5. If otter boards were constructed lighter and adequate weights were added at their bottom to stabilize them, even they were the same shapes as those of bottom trawls, they were definitely applicable to the midwater trawl gears as the result of the experiments. 6. As the results of water tank tests the relationship between net height of H cm velocity of v m/sec, and that between hydrodynamic resistance of R kg and the velocity of a model net as shown in figure 6 are respectively given by $$H=8+\frac{10}{0.4+v}$$ $$R=3+9v^2$$ 7. It was found that the cross-wing type depth control devices were more stable in operation than that of the H-wing type as the results of the experiments at sea. 8. The hydrodynamic resistance of the net gear in midwater trawling is so large, and regarded as nearly the drag, that sweeping depth of the gear was very stable in spite of types of the depth control devices. 9. An area of the horizontal wing of the H-wing type depth control device was $1.2{\times}2.4m^2$. A midwater trawl net of 2 ton hydrodynamic resistance was connected to the devices and towed with the velocity of 2.3 kts. Under these conditions the depth change of about 20m of the trawl net was obtained by controlling an angle or attack of $30^{\circ}$.

  • PDF