• Title/Summary/Keyword: series model

Search Result 5,383, Processing Time 0.028 seconds

Predicting Desired Fertigation for Rose Using Internet of Things Sensors and Time-Series Model

  • Mingle Xu;Sook Yoon;Jongbin Park;Jeonghyun Baek;Dong Sun Park
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.16-22
    • /
    • 2024
  • Greenhouse provides opportunities to have big yield effectively and efficiently. However, many resources are required, such as fertigation, a kind of solution of nutrient. Resources supply is essential to cultivate crops. Inadequate supply will hinder plant growth whereas the surplus results in waste. In this paper, we are especially interested in the fertigation supply. Further, excess fertigation leads to drainage which is difficult to purify and threatens the environment. To address this challenge, we aim to predict the desired amount of fertigation. To achieve this objective, we first establish a prototype to record the climate conditions inside a rose greenhouse using Internet of Things sensors. Simultaneously, the desired fertigation amount is obtained with the help of weight scale and historical data of fertigation supply and drainage. Second, a method is proposed to predict the desired fertigation by taking the sensors' data as input, with a time-series model. Extensive experimental results suggest the potential of our objective and method. To be specific, our method achieves an average MAE 0.032 in the validation datasets.

  • PDF

Analysis of Nonlinear Behavior in Love Model with External Force (외력을 가진 사랑 모델에서 비선형 거동 해석)

  • Huang, Lyni-Un;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.7
    • /
    • pp.845-850
    • /
    • 2015
  • Love which is one of the emotional of mankind, has been studied in sociology and psychology as a matter of great concern. Through such a research, the researchers have provided the basic mathematical model for love model, we cannot find nonlinear characteristics through the basic love model. Therefore, in this paper, in order to find nonlinear behaviors in the basic love model, we apply external force to the basic love model. Then we confirm the existence of nonlinear behaviors through time series and phase portrait. We also confirm that this nonlinear behaviors have the periodic doubling, chaotic phenomena and periodic process which are very similar to typical chaotic occurrence phenomena.

Estimating Automobile Insurance Premiums Based on Time Series Regression (시계열 회귀모형에 근거한 자동차 보험료 추정)

  • Kim, Yeong-Hwa;Park, Wonseo
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.237-252
    • /
    • 2013
  • An estimation model for premiums and components is essential to determine reasonable insurance premiums. In this study, we introduce diverse models for the estimation of property damage premiums(premium, depth and frequency) that include a regression model using a dummy variable, additive independent variable model, autoregressive error model, seasonal ARIMA model and intervention model. In addition, the actual property damage premium data was used to estimate the premium, depth and frequency for each model. The estimation results of the models are comparatively examined by comparing the RMSE(Root Mean Squared Errors) of estimates and actual data. Based on real data analysis, we found that the autoregressive error model showed the best performance.

CutPaste-Based Anomaly Detection Model using Multi Scale Feature Extraction in Time Series Streaming Data

  • Jeon, Byeong-Uk;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2787-2800
    • /
    • 2022
  • The aging society increases emergency situations of the elderly living alone and a variety of social crimes. In order to prevent them, techniques to detect emergency situations through voice are actively researched. This study proposes CutPaste-based anomaly detection model using multi-scale feature extraction in time series streaming data. In the proposed method, an audio file is converted into a spectrogram. In this way, it is possible to use an algorithm for image data, such as CNN. After that, mutli-scale feature extraction is applied. Three images drawn from Adaptive Pooling layer that has different-sized kernels are merged. In consideration of various types of anomaly, including point anomaly, contextual anomaly, and collective anomaly, the limitations of a conventional anomaly model are improved. Finally, CutPaste-based anomaly detection is conducted. Since the model is trained through self-supervised learning, it is possible to detect a diversity of emergency situations as anomaly without labeling. Therefore, the proposed model overcomes the limitations of a conventional model that classifies only labelled emergency situations. Also, the proposed model is evaluated to have better performance than a conventional anomaly detection model.

A Study on Establishment of Time Series Model for Deriving Financial Outlook of Basic Research Support Programs (기초연구지원사업의 재정소요 전망 도출을 위한 시계열 모형 수립 연구)

  • Yun, Sujin;Lee, Sangkyoung;Yeom, Kyunghwan;Shin, Aelee
    • Journal of Technology Innovation
    • /
    • v.27 no.4
    • /
    • pp.21-48
    • /
    • 2019
  • In the basic research field, quantitative expansion is carried out with active support from the government, but there is no research and policy data suggesting systematic investment plans or data-based financial requirements yet. Therefore, this study predicted future financial requirements of basic research support programs by using time series prediction model. In order to consider various factors including the characteristics of the basic research field, we selected the ARIMAX model which can reflect the effect of multi valuable factors rather than the ARIMA model which predicts the value of single factor over time. We compared the predictions of ARIMAX and ARIMA models for model suitability and found that the ARIMAX model improves the prediction error rate. Based on the ARIMAX model, we predicted the fiscal spending of basic research support programs for five years from 2017 to 2021. This study has significance in that it considers the financial requirements of the basic research support programs as a pilot research conducted by applying a time series model, which is a statistical approach, and multi-variate rather than single-variate. In addition, considering the policy trends that emphasize the importance of basic research investment such as 'the expansion of basic research budget twice', which is the current government's national policy task, it can be used as reference data in establishing basic research investment strategy.

A Study on the Demand Forecasting of Healthcare Technology from a Consumer Perspective : Using Social Data and ARIMA Model Approach (소셜데이터 및 ARIMA 분석을 활용한 소비자 관점의 헬스케어 기술수요 예측 연구)

  • Yang, Dong Won;Lee, Zoon Ky
    • Journal of Information Technology Services
    • /
    • v.19 no.4
    • /
    • pp.49-61
    • /
    • 2020
  • Prior studies on technology predictions attempted to predict the emergence and spread of emerging technologies through the analysis of correlations and changes between data using objective data such as patents and research papers. Most of the previous studies predicted future technologies only from the viewpoint of technology development. Therefore, this study intends to conduct technical forecasting from the perspective of the consumer by using keyword search frequency of search portals such as NAVER before and after the introduction of emerging technologies. In this study, we analyzed healthcare technologies into three types : measurement technology, platform technology, and remote service technology. And for the keyword analysis on the healthcare, we converted the classification of technology perspective into the keyword classification of consumer perspective. (Blood pressure and blood sugar, healthcare diagnosis, appointment and prescription, and remote diagnosis and prescription) Naver Trend is used to analyze keyword trends from a consumer perspective. We also used the ARIMA model as a technology prediction model. Analyzing the search frequency (Naver trend) over 44 months, the final ARIMA models that can predict three types of healthcare technology keyword trends were estimated as "ARIMA (1,2,1) (1,0,0)", "ARIMA (0,1,0) (1,0,0)", "ARIMA (1,1,0) (0,0,0)". In addition, it was confirmed that the values predicted by the time series prediction model and the actual values for 44 months were moving in almost similar patterns in all intervals. Therefore, we can confirm that this time series prediction model for healthcare technology is very suitable.

Prediction for spatial time series models with several weight matrices (여러 가지 가중행렬을 가진 공간 시계열 모형들의 예측)

  • Lee, Sung Duck;Ju, Su In;Lee, So Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • In this paper, we introduced linear spatial time series (space-time autoregressive and moving average model) and nonlinear spatial time series (space-time bilinear model). Also we estimated the parameters by Kalman Filter method and made comparative studies of power of forecast in the final model. We proposed several weight matrices such as equal proportion allocation, reciprocal proportion between distances, and proportion of population sizes. For applications, we collected Mumps data at Korea Center for Disease Control and Prevention from January 2001 until August 2008. We compared three approaches of weight matrices using the Mumps data. Finally, we also decided the most effective model based on sum of square forecast error.

A Study of Economic Indicator Prediction Model using Dimensions Decrease Techniques and HMM (차원감소기법과 은닉마아코프모델을 이용한 경기지표 예측 모델 연구)

  • Jeon, Jin-Ho;Kim, Min-Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.305-311
    • /
    • 2013
  • The size of the market as the economy continues to evolve, in order to make the right decisions to accurately predict the economic problems the market has emerged as an important issues. To express the modern economic system, the largest of the various economic indicators, pillars stock indicators analysis and decision-making with a proper understanding of the problem for the application of the model is suitable for time-series data concealment HMM. Based on this time series model and the calculation of the time and cost savings dimension decrease techniques for the estimation and prediction of the model was applied to the problem was to verify the validity. As a result, the model predictions in both the short term rather than long-term predictions of the model estimates the optimal predictive value similar pattern very similar to both the actual data and was able to confirm that.

Application of Time-Series Model to Forecast Track Irregularity Progress (궤도틀림 진전 예측을 위한 시계열 모델 적용)

  • Jeong, Min Chul;Kim, Gun Woo;Kim, Jung Hoon;Kang, Yun Suk;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.331-338
    • /
    • 2012
  • Irregularity data inspected by EM-120, an railway inspection system in Korea includes unavoidable incomplete and erratic information, so it is encountered lots of problem to analyse those data without appropriate pre-data-refining processes. In this research, for the efficient management and maintenance of railway system, characteristics and problems of the detected track irregularity data have been analyzed and efficient processing techniques were developed to solve the problems. The correlation between track irregularity and seasonal changes was conducted based on ARIMA model analysis. Finally, time series analysis was carried out by various forecasting model, such as regression, exponential smoothing and ARIMA model, to determine the appropriate optimal models for forecasting track irregularity progress.