This study describes the modeling of climate change impact on runoff across southeast Korea using a conceptual rainfall-runoff model TANK and assesses the results using the concept of environmental flows developed by International Water Management Institute. The future climate time series is obtained by scaling the historical series, informed by 4 global climate models and 3 greenhouse gas emission scenarios, to reflect a $4.0^{\circ}C$ increase at most in average surface air temperature and 31.7% increase at most in annual precipitation, using the spatio-temporal changing factor method that considers changes in the future mean seasonal rainfall and potential evapotranspiration as well as in the daily rainfall distribution. Although the simulation results from different global circulation models and greenhouse emission scenarios indicate different responses in flows to the climate change, the majority of the modeling results show that there will be more runoff in southeast Korea in the future. However, there is substantial uncertainty, with the results ranging from a 5.82% decrease to a 48.15% increase in the mean annual runoff averaged across the study area according to the corresponding climate change scenarios. We then assess the hydrologic perturbations based on the comparison between present and future flow duration curves suggested by IMWI. As a result, the effect of hydrologic perturbation on aquatic ecosystems may be significant at several locations of the Nakdong river main stream in dry season.
Kim, Namgyun;Choi, Bongjin;Choi, Jaehee;Jun, Byonghee
The Journal of Engineering Geology
/
v.30
no.4
/
pp.447-456
/
2020
The study area is a slope in Dogye-eup, Samcheok-si, Gangwon-do. The cutting method was applied to this slope for stabilization in 2009 due to the influence of the waste-rock dump located at the top of slope. Recently, soil cracks and creep have occurred on this slope, and the drainage channel was damaged. Therefore, it was analyzed the topography change through photogrammetry using a UAV. Orthophotos were taken in April and October 2019 respectively. From the Orthophots, Digital Surface Model (DSM) was extracted. Time series analysis was performed by comparing each DSM. The topography of October was pushed forward while maintaining the topography of April. Through these features, it is judged that the soil creep is occurring in this study area.
Journal of the Korea Society of Computer and Information
/
v.25
no.12
/
pp.73-82
/
2020
Most process date such as semiconductor and petrochemical processes, autocorrelation often exists between observed data, but when the existing SPC(Statistical process control) is applied to these processes, it is not possible to effectively detect the average change of the process. In this paper, when the average change of a certain size occurs in the process data following a specific time series model, the average of the residuals changes according to the passage of time, and the change pattern of the average is introduced around the ARMA(1,1) process. Based on this result, the reference value required in the design process of the CUSUM (Cumulative sum) control chart is appropriately considered by considering the type of the time series model of the process data of the CUSUM control chart that can detect small mean changes in the process and the width of the process mean change of interest. It was confirmed through simulation that it should be selected and used.
This study develops an artificial intelligence prediction system for Fine particulate Matter(PM2.5) based on the deep learning algorithm GAN model. The experimental data are closely related to the changes in temperature, humidity, wind speed, and atmospheric pressure generated by the time series axis and the concentration of air pollutants such as SO2, CO, O3, NO2, and PM10. Due to the characteristics of the data, since the concentration at the current time is affected by the concentration at the previous time, a predictive model for recursive supervised learning was applied. For comparative analysis of the accuracy of the existing models, CNN and LSTM, the difference between observation value and prediction value was analyzed and visualized. As a result of performance analysis, it was confirmed that the proposed GAN improved to 15.8%, 10.9%, and 5.5% in the evaluation items RMSE, MAPE, and IOA compared to LSTM, respectively.
The purpose of this study is to construct a predictable estimation model that reflects the relationship between the variables of mobile app performance and to verify how app reviews affect app performance. In study 1 and 2, the relationship between app performance indicators was derived using correlation analysis and random forest regression estimation of machine learning, and app performance estimation modeling was performed. In study 3, sentiment scores for app reviews were by using sentiment analysis of text mining, and it was found that app review sentiment scores have an effect one lag ahead of the number of daily installations of apps when using multivariate time series analysis. By analyzing the dissatisfaction and needs raised by app performance indicators and reviews of apps, companies can improve their apps in a timely manner and derive the timing and direction of marketing promotions.
We outline a process for estimating Cole-Cole parameters from time-domain induced polarization (IP) data. The IP transients are all inverted to 2D Cole-Cole earth models that include resistivity, chargeability, relaxation time, and the frequency exponent. Our inversion algorithm consists of two stages. We first convert the measured voltage decay curves into time series of current-on time apparent resistivity to circumvent the negative chargeability problem. As a first step, a 4D inversion recovers the resistivity model at each time channel that increases monotonically with time. The desired intrinsic Cole-Cole parameters are then recovered by inverting the resistivity time series of each inversion block. In the second step, the Cole-Cole parameters can be estimated readily by setting the initial model close to the true value through a grid search method. Finally, through inversion procedures applied to synthetic data sets, we demonstrate that our algorithm can image the Cole-Cole earth models effectively.
Park, Dae Kyeom;Kim, Jeong Hwan;Park, Jun Seok;Ha, Yeon Chul;Seo, Jung Kwan
International Journal of Naval Architecture and Ocean Engineering
/
v.13
no.1
/
pp.493-510
/
2021
Mineral wool is an insulation material commonly used in passive fire protection (PFP) systems on offshore installations. Insulation materials have only been considered functional materials for thermal analysis in the conventional offshore PFP system design method. Hence, the structural performance of insulation has yet to be considered in the design of PFP systems. However, the structural elements of offshore PFP systems are often designed with excessive dimensions to satisfy structural requirements under external loads such as wind, fire and explosive pressure. To verify the structural contribution of insulation material, it was considered a structural material in this study. A series of material tensile tests was undertaken with two types of mineral wool at room temperature and at elevated temperatures for fire conditions. The mechanical properties were then verified with modified methods, and a database was constructed for application in a series of nonlinear structural and thermal finite-element analyses of an offshore bulkhead-type PFP system. Numerical analyses were performed with a conventional model without insulation and with a new suggested model with insulation. These analyses showed the structural contribution of the insulation in the structural behaviour of the PFP panel. The results suggest the need to consider the structural strength of the insulation material in PFP systems during the structural design step for offshore installations.
Journal of Korea Society of Industrial Information Systems
/
v.28
no.1
/
pp.35-48
/
2023
In this study, we introduced the development status and the government policy of the Chinese automobile industry under the rapidly changing global economic environment. We conducted a consumer trend survey on automobile purchases by consumers in China. Despite the Chinese government's strong national emission control policy and stricter standards for manufacturing and selling internal combustion engine vehicles, 59.6% of respondents saying they would choose an internal combustion engine vehicle when purchasing a vehicle in the future for various reasons. It was confirmed that there is a significant gap between government policies and consumer perceptions. In addition, we have discovered the recent declining trend of automobile sales in China, and used the monthly sales volume from January 2010 to December 2020 as training set, and the sales volume from January 2021 to November 2022 as a test set. We proposed and evaluated a time-series model for predicting future automobile demand in China. Then, we showed the monthly sales forecast for 2023 when each model was applied.
Journal of the Korea Society of Computer and Information
/
v.27
no.8
/
pp.23-30
/
2022
Deep learning analyzes data to discover a series of rules and anticipates the future, helping us in various ways in our lives. For example, prediction of stock prices and agricultural prices. In this research, the results of solar photovoltaic power generation accompanied by weather are analyzed through deep learning in situations where the importance of solar energy use increases, and the amount of power generation is predicted. In this research, we propose a model using LSTM(Long Short Term Memory network) that stand out in time series data prediction. And we compare LSTM's performance with CNN(Convolutional Neural Network), which is used to analyze various dimensions of data, including images, and CNN-LSTM, which combines the two models. The performance of the three models was compared by calculating the MSE, RMSE, R-Squared with the actual value of the solar photovoltaic power generation performance and the predicted value. As a result, it was found that the performance of the LSTM model was the best. Therefor, this research proposes predicting solar photovoltaic power generation using LSTM.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.3
/
pp.456-462
/
2022
In this paper, we introduce a method of predicting time offset by applying LSTM, a deep learning model, to a precision time comparison technique based on measurement data extracted from code signals transmitted from GPS satellites to determine Universal Coordinated Time (UTC). First, we introduce a process of extracting time information from code signals received from a GPS satellite on a daily basis and constructing a daily time offset into one time series data. To apply the deep learning model to the constructed time offset time series data, LSTM, one of the recurrent neural networks, was applied to predict the time offset of a GPS satellite. Through this study, the possibility of time offset prediction by applying deep learning in the field of GNSS precise time transfer was confirmed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.